
Adapting h++ for Proving Plan Non-Existence
(IPC 2014 Planner Abstract)

P@trik Haslum
Australian National University & NICTA Optimisation Research Group

firstname.lastname@anu.edu.au

h++ is an incremental lowerbounding procedure, based on
repeatedly computing minimum-cost plans for a relaxation
of the planning problem and strengthening the relaxation
(Haslum 2012). If the relaxed plan is valid also for the real
(unrelaxed) problem, it is an optimal plan.

If the relaxed problem is unsolvable, so is the original
problem. If the original planning problem is unsolvable,
the successive strengthening is guaranteed to eventually pro-
duce a relaxation that is also unsolvable.

The only change made to the h++ procedure for the un-
solvability competition is that it computes a non-optimal re-
laxed plan in each iteration. The relaxed problem considered
in each iteration is a delete relaxation (in later iterations, of a
modification of the original problem). Thus, the existence of
a plan for the relaxation, and extracting such a plan if one ex-
ists, can be done in polynomial time. Finding a cost-optimal
relaxed plan, in contrast, is NP-hard.

The relaxation strengthening problem transformation is
potentially exponential in size. It is possible to define a dif-
ferent strengthening scheme, which does not preserve opti-
mal cost, but which does preserve unsolvability and restricts
growth to polynomial (Haslum 2009). However, this was
not implemented for the competition.

References
Haslum, P. 2009. hm(P) = h1(Pm): Alternative character-
isations of the generalisation from hmax to hm. In Proc. of
the 19th International Conference on Automated Planning
and Scheduling (ICAPS’09).
Haslum, P. 2012. Incremental lower bounds for additive cost
planning problems. In Proc. 22nd International Conference
on Automated Planning and Scheduling (ICAPS’12), 74–82.

Fast Downward Dead-End Pattern Database

Florian Pommerening and Jendrik Seipp
University of Basel
Basel, Switzerland

{florian.pommerening,jendrik.seipp}@unibas.ch

This paper describes our submission to the Unsolvability
International Planning Competition 2016. It uses a dead-end
pattern database to prune states in a breadth-first search.

Pattern databases (PDBs) (Culberson and Schaeffer 1998;
Edelkamp 2001) are usually computed by projecting a plan-
ning task onto a subset of its variables (the pattern). For ev-
ery abstract state (i.e., partial state defined on the variables
in the pattern) the perfect goal distance in the projection is
computed and stored. If an abstract state has no path to an
abstract goal in the projection, any concrete state consistent
with it cannot have a path to a goal state either. If we reach
such a state during the search, it can be pruned.

One simple way to use PDBs for detecting unsolvability
is to compute PDBs for a collection of patterns and then use
these PDBs for pruning states during a search in the transi-
tion system of the original planning task: for every encoun-
tered state, retrieve the heuristic value of all PDBs; if any of
them is∞, prune the state.

However, all entries other than ∞ in the PDB can never
be used for pruning. Likewise, abstract states that are un-
reachable in the abstraction are unreachable in the original
task and can also never be used for pruning. Dead-end pat-
tern databases thus consider only abstract states from a PDB
that are reachable in the abstraction and have an infinite goal
distance. Viewing each such abstract state as a partial state,
we end up with a set of partial states. Any concrete state that
is consistent with any partial state in the set can be pruned.

During a preprocessing step, we compute a collection of
patterns and generate the PDB for each pattern. After con-
structing each PDB, we add the partial states that can po-
tentially lead to pruning to our collection of dead ends and
destroy the PDB again, so we only have one complete PDB
and our growing collection of dead ends in memory at all
times. We limit time and memory spent in the preprocessing
phase and start searching once the limits are reached or all
patterns in our collection have been handled. If any of the
partial states is consistent with the initial state, we can stop
the preprocessing early and immediately report the task as
unsolvable.

The pattern collection we used for the IPC systematically
computes all patterns of a certain size. We restrict our at-
tention to interesting patterns as defined by Pommerening,
Röger, and Helmert (2013). Once all patterns of one size
are handled, we continue with the next larger size and repeat

this process until either
• the time limit of 900 seconds is reached, or
• the memory limit of 10 million partial states stored in the

dead-end PDB is reached, or
• a partial state consistent with the initial state is found, or
• no larger interesting pattern exists.

We implemented dead-end PDBs as a heuristic in the Fast
Downward planning system (Helmert 2006) and use it to
prune a simple breadth-first search. To efficiently store the
set of partial states, we use a match tree data structure, simi-
lar to the way the successor generator is stored in Fast Down-
ward. Each inner node of the match tree corresponds to one
variable and has a child for each value of the variable and
one additional child for a “don’t care” value. Leaves deter-
mine whether the path leading to them represents a dead-
end. A new partial state p can be added to the match tree by
following the correct value successor for every variable on
which p is defined and the “don’t care” successor for other
variables until a leaf is reached. If that leaf denotes a dead
end, a more general partial state already is contained in the
match tree. Otherwise, the leaf is replaced with a sequence
of nodes for all remaining variables in the domain of p fol-
lowed by a leaf denoting a dead-end. A concrete state can
be tested against all partial states in the match tree by always
following both the matching value successor and the “don’t
care” successor. If a leaf denoting a dead end is found, the
state can be pruned.

Acknowledgments
We would like to thank all Fast Downward contributors, and
Malte Helmert in particular.

References
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3):318–334.
Edelkamp, S. 2001. Planning with pattern databases. In
Proc. ECP 2001, 84–90.
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting
the most out of pattern databases for classical planning. In
Proc. IJCAI 2013, 2357–2364.

Reachlunch Entering The Unsolvability IPC 2016

Tomáš Balyo∗
Karlsruhe Institute of Technology

Karlsruhe, Germany
biotomas@gmail.com

Martin Suda†
Vienna University of Technology

Vienna, Austria
msuda@forsyte.tuwien.ac.at

Abstract

Reachlunch is a sequential portfolio planner designed to
recognize unsatisfiable planning instances. In the first
stage it runs blind depth-first search. If the problem is
not solved by DFS then it is encoded into propositional
satisfiability using the Compact Reinforced encoding.
The encoded problem is handed to our (non)reachability
solver based on the PDR/IC3 algorithm and imple-
mented on top of the SAT solver Minisat.

Introduction
Reachlunch is a planner designed to recognize unsatisfiable
planning instances. Although the main focus of the plan-
ning community has traditionally been on satisfiable (solv-
able) problems only, more recently the importance of de-
tecting unsatisfiable (unsolvable) instances is getting rec-
ognized and addressed (see, e.g., Bäckström, Jonsson, and
Ståhlberg, 2013; Hoffmann, Kissmann, and Álvaro Torralba,
2014). This is also testified by the emergence of the Unsolv-
ability planning competition (Muise and Lipovetzky, 2016).

The main motivation behind Reachlunch is to explore the
potential for the detection of unsatisfiable planning instances
of Property Directed Reachability (PDR), also called IC3, a
very successful algorithm developed in the model checking
community (Bradley, 2011; Eén, Mishchenko, and Brayton,
2011). As explained by Suda (2014), PDR is designed for
deciding reachability in symbolically represented transition
systems, which is a representation to which a PDDL plan-
ning benchmark can be translated in a straightforward way
by using most of the standard encoding schemes of the plan-
ning as satisfiability paradigm (Kautz and Selman, 1996).
Reachlunch uses Reinforced Encoding (Balyo, Barták, and
Trunda, 2015) for that purpose.

Reachlunch is a portfolio system and complements the
power of PDR with another engine (actually executed first,
for a limited amount of time) based on blind depth first
search. In the following sections we describe the individual
ingredients behind the design of Reachlunch.
∗Supported by DFG project SA 933/11-1.
†Supported by the ERC Starting Grant 2014 SYMCAR 639270

and the Austrian research project FWF RiSE S11409-N23.
Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Symbolic Transition Systems
By a Symbolic Transition System (STS) we mean a fi-
nite state transition system described using the language of
propositional logic, namely conjunctive normal form (CNF).
A transition system is a graph having states as vertices and
transitions between states as edges. There is a distinguished
subset of vertices for initial states and another for goal states.
We are interested in answering whether there exists a path
from an initial state leading to a goal state. As a symbolic
description, an STS can be exponentially more succinct than
the explicit enumeration of the transition system’s states.
However, basic questions concerning the existence of an ini-
tial (or goal) state or the task of enumerating state’s succes-
sors need to be in general delegated to a SAT solver.

Formally, an STS is a tuple S = (Σ, I, U,G, T), where
Σ = {x, y, . . .} is a finite signature, i.e. a finite set of propo-
sitional variables, I,G, U are sets of clauses over Σ, and T
is a set of clauses over Σ ∪ Σ′, where Σ′ = {x′, y′, . . .} is
the set of variables for the next state, a distinct copy of Σ.
The set of states of S is formed by all the Boolean valuations
over Σ which satisfy the U -clauses. Of these, those that also
satisfy I are the initial states and those that also satisfy G
are the goal states. There is a transition between states s and
t iff (s, t′) |= T , where t′ is the valuation that works on the
variables of Σ′ in the same way as t works on those of Σ,
i.e. t′(x′) = t(x) for any x ∈ Σ.

It is easy to observe that a planning problem can be trans-
lated into an STS. In fact, most of the standard encoding
schemes of the planning as satisfiability paradigm (Kautz
and Selman, 1996) can be used for this purpose. At the
same time, STS can be used as an input of many reachabil-
ity checking algorithms developed by the hardware model
checking community, in particular PDR.

The SAT Encoding used by Reachlunch
To obtain an STS, Reachlunch uses the Reinforced Encod-
ing (Balyo, Barták, and Trunda, 2015), which is a com-
bination of the traditional Direct Encoding (Kautz and
Selman, 1992), which encodes state variable values, and
SASE (Huang, Chen, and Zhang, 2010), which encodes
the transitions between the values of state variables in the
planning problem. The Reinforced Encoding encodes both,
which is redundant in the sense of Boolean variables, but on
other hand it reduces the number of clauses in the formula

and enhances unit propagation. This helps SAT solvers to
solve the formulas faster.

Property Directed Reachability
PDR is best understood as a hybrid between an explicit and a
symbolic search of the given STS S. It explicitly constructs
a path consisting of concrete states, starting from a goal state
and regressing it step by step towards an initial state. (The
opposite direction of traversal is also possible.) At the same
time, it maintains symbolic reachability information, which
is locally refined whenever the current path cannot be ex-
tended further. The reachability information guides the path
construction and is bound to eventually converge to a certifi-
cate of non-reachability, if no path of arbitrary length exists.

In more detail, the reachability information takes the form
of a sequence Fi of sets of clauses. The first set in the se-
quence, F0, is fixed to be equal to I . Each of the following
sets Fi over-approximates the image of Fi−1 with respect to
the transition relation. These clause sets play a role similar
to an admissible heuristic. They represent a lower bound es-
timate for the distance of a state to the initial state and thus
provide a means to guide the search towards it. However,
while a heuristic value of a particular state is normally com-
puted only once and it remains constant during the search
for a plan, the clause sets in PDR are refined continually.
The refinement happens on demand, driven by the states en-
countered during the search.

Since the path construction happens in the context of a
concrete encoding, PDR can be likened to an instance of
the planning as satisfiability approach in which the construc-
tion of the assignment is controlled to grow only in one di-
rection. PDR also proceeds iteratively, gradually disproving
existence of plans of length k = 0, 1, 2, After each it-
eration, however, a special clause propagation phase tries
to bring as many clauses as possible from Fi to Fi+1 while
preserving their logical relation. If it is achieved during this
phase that Fi = Fi+1 for some i < k, the algorithm ter-
minates having shown that there is no path connecting the
goal and initial state. In a nutshell, the proof is inductive and
consists of the following three claims:

I |= Fi, Fi ∧ T |= F ′i , Fi ∧G |= ⊥.

The individual single-step reachability queries within the
STS are typically implemented by a call to a SAT solver.
However, for a simple encoding of STRIPS problems an ex-
plicit polynomial time procedure can be devised. More de-
tails on this interesting algorithm presented from the plan-
ning perspective can be found in (Suda, 2014).

The Other Engine: Blind Depth First Search
Our depth first search algorithm traverses the search space
of the planning instance in a depth-first fashion by system-
atically trying each applicable action in each reachable state
while avoiding revisiting already explored states. The order-
ing of the actions is guided by a trivial heuristic that prefers
actions leading to states that are similar to the goal state.
The heuristic simply counts the number of state variables
that have the same values as the goal values of the particular
variables.

The overall architecture
Reachlunch is a portfolio system running in two stages.
The first stage executes the just described simple brute-force
depth-first-search (DFS) for a limited amount of time. If the
DFS cannot traverse all the reachable states within its time
limit and prove that no solution exists then the second stage
is executed.

The second stage is relies on Property Directed Reacha-
bility. The input problem is encoded into an STS and then
handed over to an implementation of PDR. We designed a
new file format for this exchange, which we call DIMSPEC
(Suda, 2016). It is a simple modification of the well-known
DIMACS CNF format used by most SAT solvers extended to
define the four individual clause sets of an STS – I, U,G, T .

Implementation Details
Our planner takes input in the SAS+ format (Bäckström and
Nebel, 1995). For benchmarks provided in the PDDL format
we use Fast Downward (Helmert, 2006) to translate them
into the SAS+ format.

The actual implementation of PDR is called minireachIC3
and is freely available (Suda, 2013). It relies on Minisat ver-
sion 2.2 (Eén and Sörensson, 2003) as the backend SAT
solver and is implemented in the C++ language.

The depth first search and the translation of SAS+ to SAT
is implemented withing the Freelunch planning library (Ba-
lyo, 2016) which is written in Java. Hence the name of our
planner – Reachlunch – Freelunch combined with reachabil-
ity reasoning.

References
Bäckström, C., and Nebel, B. 1995. Complexity results for

sas+ planning. Computational Intelligence 11:625–656.
Bäckström, C.; Jonsson, P.; and Ståhlberg, S. 2013. Fast de-

tection of unsolvable planning instances using local con-
sistency. In Helmert, M., and Röger, G., eds., SOCS.
AAAI Press.

Balyo, T.; Barták, R.; and Trunda, O. 2015. Reinforced
encoding for planning as sat. In Acta Polytechnica CTU
Proceedings.

Balyo, T. 2016. Freelunch, an open-source java planner and
planning library. Web site, http://freelunch.eu.

Bradley, A. R. 2011. SAT-based model checking without
unrolling. In Jhala, R., and Schmidt, D. A., eds., VMCAI,
volume 6538 of LNCS, 70–87. Springer.

Eén, N., and Sörensson, N. 2003. An extensible SAT-solver.
In Giunchiglia, E., and Tacchella, A., eds., SAT, volume
2919 of Lecture Notes in Computer Science, 502–518.
Springer.

Eén, N.; Mishchenko, A.; and Brayton, R. K. 2011. Effi-
cient implementation of property directed reachability. In
Bjesse, P., and Slobodová, A., eds., FMCAD, 125–134.
FMCAD Inc.

Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research (JAIR) 26:191–
246.

Hoffmann, J.; Kissmann, P.; and Álvaro Torralba. 2014.
“Distance”? Who cares? Tailoring Merge-and-Shrink
heuristics to detect unsolvability. In ICAPS 2014 Work-
shop on Heuristics and Search for Domain-independent
Planning (HSDIP). To appear.

Huang, R.; Chen, Y.; and Zhang, W. 2010. A novel transition
based encoding scheme for planning as satisfiability. In
Fox, M., and Poole, D., eds., AAAI. AAAI Press.

Kautz, H. A., and Selman, B. 1992. Planning as satisfiabil-
ity. In Proceedings of ECAI, 359–363.

Kautz, H. A., and Selman, B. 1996. Pushing the envelope:
Planning, propositional logic and stochastic search. In
Clancey, W. J., and Weld, D. S., eds., AAAI/IAAI, Vol. 2,
1194–1201. AAAI Press / The MIT Press.

Muise, C., and Lipovetzky, N. 2016. Unsolvabil-
ity international planning competition. http://unsolve-
ipc.eng.unimelb.edu.au/.

Suda, M. 2013. minireachIC3, a Minisat-based implemen-
tation of PDR. Web site, https://github.com/
quickbeam123/minireachIC3.

Suda, M. 2014. Property directed reachability for automated
planning. J. Artif. Intell. Res. (JAIR) 50:265–319.

Suda, M. 2016. DIMSPEC, a format for specifying symbolic
transition systems. Web site, http://forsyte.at/
dimspec/.

IPROVERPLAN: a system description

Konstantin Korovin
University of Manchester,

Manchester, UK

Martin Suda∗

Vienna University of Technology,
Vienna, Austria

Introduction
IPROVERPLAN is an automated planning system that com-
bines searching for plans and proving non-existence of so-
lutions. In the Unsolvability International Planning Compe-
tition (Muise and Lipovetzky, 2016) only non-existence of
solutions is reported.

The idea behind IPROVERPLAN is to lift a traditional en-
coding of planning into SAT (Kautz and Selman, 1992) to
first-order level and to use an extension of the first-order
theorem prover IPROVER (Korovin, 2008) for solving (non-
)reachability questions in thus obtained first-order transition
system. Thus the main feature of IPROVERPLAN is that it
does not start the solving process by grounding the PDDL
input. The planner also uses the lifted (i.e. first order) invari-
ants produced by the algorithm adapted from Helmert (2009,
Sect. 5) for pruning the search space.

First-Order Transition Systems
We encode planning domains as transition systems repre-
sented in (many-sorted) first-order logic. One of the main
motivations behind this encoding is that first-order logic
provides a higher level representation compared to propo-
sitional logic and in particular, avoids upfront grounding of
the problem and at the same time reasoning can still be done
efficiently by first-order theorem provers.

Our encoding falls into the effectively propositional
(EPR) fragment of first-order logic which in the clausal form
consists of sets of first-order clauses that do not contain
function symbols other than constants. The EPR fragment
is decidable (NEXPTIME-complete) and there are efficient
calculi and systems for reasoning within this fragment.

We use EPR-based bounded model checking (BMC) for
solving reachability problems (Emmer et al., 2012; Pérez
and Voronkov, 2007; Emmer et al., 2010) and an exten-
sion of BMC with k-induction for solving non-reachability
problems (Khasidashvili et al., 2015). In a nutshell, bounded
model checking solves the reachability problem by symbol-
ically unrolling the transition relation upto some bound n,
and checking satisfiability of the resulting formula. If the

∗Supported by the ERC Starting Grant 2014 SYMCAR 639270
and the Austrian research project FWF RiSE S11409-N23.
Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

BMC-unrolling of the system is satisfiable at a bound n then
a goal state is reachable in n steps from an initial state and
in this case we are done, otherwise we repeat unrolling of
the system with an increased bound n + 1. One of the ad-
vantages of using a first-order encoding is that the system
representation is not copied during the unrolling which can
be the case with propositional translations.

The encoding
IPROVERPLAN lifts traditional encodings of planning into
SAT (Kautz and Selman, 1992) to first-order level. This is
straightforward in the sense that predicates which are usu-
ally introduced for a SAT encoding have naturally positions
for arguments and our encoding supplies universal first-
order variables for these arguments instead of exhaustively
grounding the predicates. However, there are various sub-
tleties connected with the lifting which need to be addressed.

Multiple types/sorts. PDDL benchmarks can declare and
make use of a hierarchy of types, including disjunctive
types. This hierarchy needs to be flattened in order to be
mapped to many-sorted first order logic.

Finite domain. It is in general necessary to express that the
domain of discourse contains only the declared objects
and that these objects are distinct. This can be expressed
with the help of the equality predicate, but, in particular,
the distinctness criterion leads to quadratically many ax-
ioms in the number of objects.

Negative information about the initial state. Although
the initial state is in PDDL described using only positive
information about the facts that hold, a first order encod-
ing needs to also negatively express all the facts which do
not hold. We avoid generating all the “non-mentioned”,
potentially exponentially many ground facts, by using the
equality predicate.

First-delete-then-add semantics. Even for problems offi-
cially declared as STRIPS, we sometimes need to resort
to techniques for expressing conditionality of effects. That
is because two first-order effects of an action may contra-
dict each other and the semantics of PDDL dictates that
in such a case the positive effect should have priority and
be reflected in the successor state.1

1Without this extra measure the action would erroneously be-

Skolemization. At each time step of the modelled plan at
least one action is applied. In the first-order lifting, we do
not know which specific arguments will an action take.
Thus these arguments are modelled as existential vari-
ables in the encoding and need to be Skolemized dur-
ing translation to clause normal form. In order to stay
within the EPR fragment, Skolem functions are translated
into Skolem predicates (Baumgartner et al. (2009); Khasi-
dashvili et al. (2015)).

There are two encodings we lifted into first order and
experimented with. A serial encoding with an at-least-one
axiom and classical frame axioms (McCarthy and Hayes,
1969) and a parallel encoding with mutual exclusions and
explanatory frame axioms (Haas, 1987). We refer to (Ghal-
lab et al., 2004, ch. 7.4) for further details. The competition
version of IPROVERPLAN uses the serial encoding.

iProver
iProver is an automated theorem prover for many-sorted
first-order logic, based on an instantiation calculus Inst-
Gen (Korovin, 2013, 2008). The basic idea behind Inst-
Gen is to interleave model-guided on demand instantiations
of first-order formulae with propositional reasoning in an
abstraction-refinement scheme. The calculus behind iProver
is a decision procedure for the EPR fragment and iProver
is particularly efficient in this fragment (Sutcliffe, 2014).
iProver incorporates first-order bounded model checking
and k-induction which we utilised for solving planning (un)-
reachability problems.

iProver is implemented in OCaml and incorporates a wide
range of simplification and preprocessing techniques (Ko-
rovin, 2008; Khasidashvili and Korovin, 2016). iProver uses
MiniSAT (Eén and Sörensson, 2004) for reasoning with
ground abstractions and Vampire for clausification (Kovács
and Voronkov, 2013; Hoder et al., 2012).

The architecture
As a computer program, IPROVERPLAN consists of three
main parts. The first part is a PDDL parser and encoder writ-
ten in python. Given a PDDL input, it generates two outputs:
1) the encoded first-order transition system and 2) a Prolog
representation of the input used by the invariant generator.

The second part is an SWI-Prolog implementation of the
invariant generating algorithm described by Helmert (2009,
Sect. 5). The invariants produced by this part enrich the tran-
sition system as universally quantified clauses referring to
every time moment. Although logically redundant they en-
able early pruning of obviously unreachable states.

Finally, the transition system is translated into first-order
conjunctive normal form by Vampire and passed to iProver.

References
P. Baumgartner, A. Fuchs, H. de Nivelle, and C. Tinelli.

Computing finite models by reduction to function-free
clause logic. J. Applied Logic, 7(1):58–74, 2009.

come unaplicable in the encoding due to the contradicting effects.

N. Eén and N. Sörensson. An extensible SAT-solver. In
SAT’03, pages 502–518. Springer, 2004.

M. Emmer, Z. Khasidashvili, K. Korovin, C. Sticksel, and
A. Voronkov. EPR-based bounded model checking at
word level. In IJCAR, pages 210–224, 2012.

Moshe Emmer, Zurab Khasidashvili, Konstantin Korovin,
and Andrei Voronkov. Encoding industrial hardware ver-
ification problems into effectively propositional logic. In
FMCAD, pages 137–144, 2010.

Malik Ghallab, Dana S. Nau, and Paolo Traverso. Auto-
mated planning – theory and practice. Elsevier, 2004.
ISBN 978-1-55860-856-6.

Andrew R. Haas. The case for domain-specific frame ax-
ioms. In The Frame Problem in Artificial Intelligence,
Proceedings of the 1987 Workshop on Reasoning about
Action. Morgan Kaufmann, 1987.

Malte Helmert. Concise finite-domain representations for
PDDL planning tasks. Artif. Intell., 173(5-6):503–535,
2009.

Krystof Hoder, Zurab Khasidashvili, Konstantin Korovin,
and Andrei Voronkov. Preprocessing techniques for first-
order clausification. In Formal Methods in Computer-
Aided Design, FMCAD, pages 44–51, 2012.

Henry A. Kautz and Bart Selman. Planning as satisfiability.
In ECAI, pages 359–363, 1992.

Zurab Khasidashvili and Konstantin Korovin. Predicate
elimination for preprocessing in first-order theorem prov-
ing. In SAT’16, page to appear, 2016.

Zurab Khasidashvili, Konstantin Korovin, and Dmitry
Tsarkov. EPR-based k-induction with counterexample
guided abstraction refinement. In GCAI 2015, pages 137–
150. EasyChair, 2015.

Konstantin Korovin. iProver – an instantiation-based the-
orem prover for first-order logic (system description).
In IJCAR 2008, volume 5195 of LNCS, pages 292–298.
Springer, 2008.

Konstantin Korovin. Inst-Gen - a modular approach to
instantiation-based automated reasoning. In Program-
ming Logics, pages 239–270. Springer, 2013.

Laura Kovács and Andrei Voronkov. First-order theorem
proving and Vampire. In CAV 2013, pages 1–35, 2013.

John McCarthy and Patrick J. Hayes. Some philosophical
problems from the standpoint of artificial intelligence. In
B. Meltzer and D. Michie, editors, Machine Intelligence
4, pages 463–502. Edinburgh University Press, 1969.

Christian Muise and Nir Lipovetzky. Unsolvability
international planning competition. http://unsolve-
ipc.eng.unimelb.edu.au/, February 2016.

Juan Antonio Navarro Pérez and Andrei Voronkov. En-
codings of bounded LTL model checking in effectively
propositional logic. In CADE-21, pages 346–361, 2007.

Geoff Sutcliffe. The CADE-24 automated theorem proving
system competition - CASC-24. AI Com., 27(4):405–416,
2014.

SymPA: Symbolic Perimeter Abstractions for Proving Unsolvability

Álvaro Torralba
Saarland University

Saarbrücken, Germany
torralba@cs.uni-saarland.de

Abstract

This paper describes the SymPA planner that participated in
the 2016 unsolvability International Planning Competition
(IPC). SymPA is built on top of SymBA∗, the winner of
the optimal-track of the 2014 IPC. SymBA∗ combines sym-
bolic bidirectional search and perimeter abstraction heuris-
tics. However, despite to the close relation between cost-
optimal planning and deciding plan existence, SymBA∗ is not
suitable for proving unsolvability. SymPA is the result of tai-
loring symbolic perimeter abstraction heuristics for proving
unsolvability of planning problems.

Introduction
Symbolic search is a technique for state-space exploration
that uses efficient data-structures, usually Binary Decision
Diagrams (BDDs) (Bryant 1986), to represent and manip-
ulate sets of states. This has been a successful approach in
different areas in which algorithms must exhaustively search
the state space like model-checking (McMillan 1993), plan-
ning with uncertainty (Cimatti and Roveri 2000) or classical
planning. The pioneer in classical planning was the MIPS
planner (Edelkamp and Helmert 2001) that used bidirec-
tional search. Symbolic search was also used for computing
Pattern Database (PDB) heuristics (Edelkamp 2001; 2002).
The Gamer planner popularized the use of bidirectional
search and BDDA∗ with symbolic pattern databases (Kiss-
mann and Edelkamp 2011; Kissmann 2012). Moreover, re-
cent improvements (Torralba et al. 2013a; Torralba and
Alcázar 2013) have posed symbolic bidirectional search as a
state-of-the-art algorithm for cost-optimal planning. A clear
representative of this trend is the SymBA∗ planner, which
uses symbolic perimeter abstractions to inform a symbolic
bidirectional A∗ search (Torralba et al. 2016) and won the
optimal-track of IPC-14.

Proving unsolvability via search requires to completely
exhaust the state space so symbolic search is very promis-
ing. Moreover, abstractions are specially useful in unsolv-
able problems since it suffices to find an unsolvable ab-
stract problem (Bäckström et al. 2013). However, SymBA∗

is a cost-optimal planner so it focuses on searching plans
of lower cost. In this paper, we present SymPA (standing
for symbolic perimeter abstractions) that tailors symbolic
search and perimeter PDBs for proving unsolvability.

Symbolic Perimeter Abstractions
Abstraction heuristics map the state space into a smaller ab-
stract state space and use the optimal solution cost as an es-
timation for the original problem. There are different types
of abstraction heuristics depending on how the mapping is
defined. Pattern Databases (PDBs) (Culberson and Schaef-
fer 1998; Edelkamp 2001) are projections of the planning
task onto a subset of variables (called pattern), so that two
states are equivalent iff they agree on the value of variables
in the pattern. Merge-and-shrink (M&S) abstractions gener-
alize PDBs, allowing to derive abstractions that use all vari-
ables (Helmert et al. 2007; 2014).

Here we focus on PDBs so the abstraction mapping is de-
termined by a subset of variables, W ⊆ V . We will use T W

to denote a search that takes into account variables in W and
ignore the rest. Hence, T V represents a search on the state
space of the planning task. To distinguish the direction of the
search, we will use T W

fw and T W
bw to refer to searches in the

forward and backward direction, respectively. We denote a
search in an unspecified direction by T W

u .
Perimeter abstractions construct a perimeter around the

goal in the original state space and use it to seed the
search in the abstract state space (Felner and Ofek 2007;
Eyerich and Helmert 2013). The perimeter is constructed
by a backward search, T Vbw , which computes the perfect
heuristic for all states in closed(T Vbw). For states outside the
perimeter, an abstract search, T W

bw computes the minimum
distance from each abstract state to the abstract perimeter.

Symbolic perimeter abstractions generalized this idea, in-
troducing the use of multiple levels of abstractions (Torralba
et al. 2013b; Torralba 2015). Contrary to other PDB ap-
proaches that start from single-variable PDBs and iteratively
add more variables into the pattern (Haslum et al. 2007;
Bäckström et al. 2013), symbolic perimeter PDBs aim to re-
lax the search as little as possible. Hence, they start building
a perimeter that considers all variables and, only when the
search is unfeasible, remove variables from the pattern one
by one until the search can be continued.

The SPM&S planner computes several perimeter M&S
and PDB heuristics in backward direction to inform an A∗

search. SPM&S participated in the cost-optimal track of
IPC14 and was competitive with other heuristic search plan-
ning, only behind of symbolic bidirectional search planners.

SymBA∗: Bidirectional Search with Perimeter
Abstraction Heuristics

SymBA∗ performs several symbolic bidirectional A∗

searches on different state spaces. First, SymBA∗ starts a
bidirectional search in the original state space, T V . At each
iteration, the algorithm performs a step in a selected direc-
tion, i.e. expands the set of states with minimum f -value
in the frontier. Since no abstraction heuristic has been de-
rived yet, it behaves like symbolic bidirectional uniform-cost
search. This search continues until the next layer in both
directions is deemed as unfeasible, because SymBA∗ esti-
mates that it will take either too much time or memory. Only
then, a new bidirectional search is started in an abstract state
space, T W , W ⊂ V , initialized with the current frontiers
of T V . The abstract searches provide heuristic estimations,
increasing the f -value of states in the original search fron-
tiers. Eventually, the search in the original state space will
be simplified and it will be continued.

The overall strategy of SymBA∗ is motivated by the great
results of symbolic bidirectional uniform-cost search in cost-
optimal planning. Therefore, SymBA∗ is configured to run
as much search as possible in the original state space, only
resorting to use abstractions when the unabstracted search
becomes unfeasible. Hence, most theory of SymBA∗ is de-
voted to how evaluate the heuristics in a lazy way, minimiz-
ing the amount of search performed in abstract state spaces.

However, SymBA∗ is not completely suitable for proving
unsolvability for several reasons:

1) Bidirectional search is less effective In problems with
a solution bidirectional search is effective because, instead
of searching a direction until the depth of the optimal so-
lution d, we perform two searches until depth d/2. This is
a great advantage since the number of explored states often
grows exponentially in the search depth. However, unsolv-
ability will only be proved whenever one of the frontiers is
completely exhausted. Hence, performing a forward and a
backward search just duplicates the planner effort.

2) Abstractions are more effective In cost-optimal plan-
ning, doing an abstract search cannot possibly solve the
problem. However, in the unsolvability case, often a sub-
set of variables is enough to prove unsolvability so it is
possible to prove unsolvability without doing any search in
the original state space. In the experimental analysis done
by Torralba et al. (2016), it was shown that SymBA∗ does
not always benefits from abstraction heuristics because it is
hard to find good abstractions that simplify the search while
preserving goal-distance information. However, as analyzed
by (Bäckström et al. 2013), often considering a (sometimes
small) subset of variables is enough to prove unsolvability.
Hence, searching small abstract state spaces can be expected
to be much more effective in problems without any solution.

3) Costs are ignored Action-costs, as well as distance to
the goal and/or the initial state are irrelevant in order to prove
unsolvability. This, allows to greatly simplify most parts of
the planner, such as ignoring the g-value of states and the
heuristic evaluation.

SymPA’s Algorithm
As SymBA∗, SymPA performs searches in forward and
backward direction in the original and abstract state spaces.
However, there are a number of differences with respect
to SymBA∗. First of all, since the cost of the path is not
relevant, symbolic breadth-first search is used instead of
uniform-cost or BDDA∗. This simplifies the representation
of the open list because a single BDD is used to contain all
the states in the frontier, instead of separated BDDs for dif-
ferent g-values.

Moreover, despite it performs searches in both directions,
searches in SymPA are not truly bidirectional because there
is no direct interaction between the two frontiers, i.e. the
planner does not need to check whether the frontiers inter-
sect. The planner benefits from doing searches in both direc-
tions because of two reasons. On the one hand, forward and
backward search may have different performance so by do-
ing both, the planner benefits of always using the best one for
the problem at hand, like portfolio approaches. On the other
hand, both directions have synergy when using abstractions
since states that are unreachable in one direction are dead-
ends in the opposite one.

Finally, while SymBA∗ fosters the bidirectional search
in the original state space until it is completely unfeasible,
SymPA performs multiple searches in smaller abstract state
spaces in order to discover dead-ends that will help with
searches in larger state spaces.

Algorithm 1 shows the pseudocode of SymPA. SymPA
maintains a set of ongoing searches, SearchPool , that is ini-
tialized to searches in both directions in the original state
space. It also keeps a set of dead-end states for forward,
Dfw , and backward, Dfw , search that are initialized empty.
A search is considered to be feasible if its frontier is repre-
sented with less than M BDD nodes, where M is a param-
eter of the algorithm. M is dynamically adjusted, starting in
a relatively low value to explore different abstract searches
and increased over time in order to explore less relaxed state
spaces. At every iteration, if any search in the pool is feasi-
ble, the search deemed as easiest (according to a time esti-
mation based on the time taken by the last step and the num-
ber of BDD nodes used to represent its frontier) is continued
one more step.

Whenever a search is terminated, if it did not find any
solution, the problem has been proved unsolvable and the
algorithm terminates. If the search in the original state space
(T Vu) found a solution, then the problem has been proved
solvable. Otherwise, we eliminate the search from the pool
of ongoing searches, gather all unreachable states (which are
dead-ends for the opposite direction) and remove them from
all searches in the opposite direction.

When all current searches are unfeasible, a symbolic
perimeter abstraction is constructed. We randomly select the
forward or backward direction and start from the perimeter
on the original state space. The search is relaxed by abstract-
ing some variables away, until it becomes feasible. The pro-
cess interleaves abstraction and search steps until the search
is finished, storing intermediate results in the search pool to
be continued later if they become feasible.

Algorithm 1: SymPA
Input: Planning problem: Π = 〈V,A, I,G〉
Output: “Solvable” or “Unsolvable”

1 SearchPool ← {T Vfw , T Vbw} ;
2 Dfw , Dbw ← ∅, ∅ ;
3 Loop
4 if ∃T X

u ∈ SearchPool s.t. Is-Feasible(T X
u)

then
5 T X

u ← Easiest-Search(SearchPool) ;
6 Expand-frontier(T X

u , Du) ;
7 else
8 T X

u ← RandomSelection({T Vfw , T Vbw}) ;
9 while T X

u is not finished do
10 if Is-Feasible(T X

u) then
11 Expand-frontier(T X

u , Du) ;
12 else
13 SearchPool ← SearchPool ∪ {T X

u } ;
14 T X

u ← Relax-frontier(T X
u) ;

15 if T X
u is finished then

16 if not Found-Solution (T X
u) then

17 return “Unsolvable” ;
18 if X = V then
19 return “Solvable” ;

20 SearchPool ← SearchPool \ {T X
u } ;

21 D¬u ← D¬u∪Unreachable-States(T X
u)

;
22 Remove-DeadEnds(D¬u, T Θ

¬u);

Abstraction Strategy
The abstraction selection strategy is decisive for the overall
performance. Symbolic perimeter PDBs start considering all
variables and relax one variable at a time, until the BDD rep-
resentation of the search frontier has been simplified. To pick
which variable to relax, we generate a set of candidate pat-
terns in the following way. Given the pattern to relax, W , we
have a candidate for each variable vi ∈W , Wi := W \{vi}.
As pointed out by Haslum et al. (2007), patterns that do
not contain any goal variable or whose variables form more
than one connected component in the causal graph can be
ignored because they are not more informed than patterns
with strictly less variables. Even though this does not al-
ways holds when using perimeter abstractions (because the
perimeter might induce a relation between the variables), it
is still a good heuristic criterion to focus on useful patterns.
Hence, we eliminate candidates that do not contain any goal
variable. If a candidate pattern consists of multiple discon-
nected components in the causal graph, we consider each of
them an independent candidate. Finally, we discard all pat-
terns that are subsets of other candidates, in order to relax
the search the least possible. Among all candidates, we pre-
fer those that have not previously been selected and pick one
of them at random.

IPC configuration
SymPA is built on top of the Fast Downward Planning Sys-
tem (Helmert 2006) and uses h2 relevance analysis in order
to eliminate operators and simplify the planning task prior to
the search (Alcázar and Torralba 2015). We submit two dif-
ferent configurations SymPA and SymPA-irr. Both use the
procedure described in this paper. The maximum number of
BDD nodes for a search to be feasible, M , is set to 10 000
at the beginning. Then, after 300 seconds, is incremented by
10 000 nodes every second. This strategy guarantees that, at
the beginning, many variable subsets will be tried and, at the
end, the planner will focus on less abstract state spaces using
the information discovered by the previous runs.

The only difference between SymPA and SymPA-irr is
that the latter also uses a simulation-based irrelevance analy-
sis in order to eliminate operators and simplify the planning
task prior to the search (Torralba and Kissmann 2015). This
irrelevance analysis constructs a set of transition systems by
using M&S with the DFP merge strategy (Dräger et al. 2006;
Sievers et al. 2014) and bisimulation shrinking (Nissim et al.
2011) with a limit of 50 000 transitions. Then, it computes
a label-dominance simulation relation (Torralba and Hoff-
mann 2015), which is used to eliminate transitions that can
be proved unnecessary to reach the goal. All actions whose
transitions are removed this way can be removed from the
planning task without affecting plan existence.

Conclusions
This paper has presented the SymPA and SymPA-irr plan-
ners that participated in the 2016th edition of the unsolv-
ability IPC. They adapt for proving unsolvability the sym-
bolic bidirectional search and perimeter abstractions tech-
niques successfully used in cost-optimal planning.

Acknowledgements I’d like to thank Jörg Hoffmann and
Peter Kissmann for their contributions on irrelevance prun-
ing in SymPA-irr, and the Fast Downward Planning System
development team for sharing its latest version.

References
Vidal Alcázar and Álvaro Torralba. A reminder about
the importance of computing and exploiting invariants in
planning. In Ronen Brafman, Carmel Domshlak, Patrik
Haslum, and Shlomo Zilberstein, editors, Proceedings of the
25th International Conference on Automated Planning and
Scheduling (ICAPS’15). AAAI Press, 2015.
Christer Bäckström, Peter Jonsson, and Simon Ståhlberg.
Fast detection of unsolvable planning instances using local
consistency. In Malte Helmert and Gabriele Röger, editors,
Proceedings of the 6th Annual Symposium on Combinatorial
Search (SOCS’13), pages 29–37. AAAI Press, 2013.
Randal E. Bryant. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on Computers,
35(8):677–691, 1986.
Alessandro Cimatti and Marco Roveri. Conformant plan-
ning via symbolic model checking. Journal of Artificial In-
telligence Research, 2000.

Joseph C. Culberson and Jonathan Schaeffer. Pattern
databases. Computational Intelligence, 14(3):318–334,
1998.
Klaus Dräger, Bernd Finkbeiner, and Andreas Podelski. Di-
rected model checking with distance-preserving abstrac-
tions. In Antti Valmari, editor, Proceedings of the 13th In-
ternational SPIN Workshop (SPIN 2006), volume 3925 of
Lecture Notes in Computer Science, pages 19–34. Springer-
Verlag, 2006.
Stefan Edelkamp and Malte Helmert. MIPS: The model
checking integrated planning system. AI Magazine,
22(3):67–71, 2001.
Stefan Edelkamp. Planning with pattern databases. In
A. Cesta and D. Borrajo, editors, Proceedings of the 6th
European Conference on Planning (ECP’01), pages 13–24.
Springer-Verlag, 2001.
Stefan Edelkamp. Symbolic pattern databases in heuris-
tic search planning. In M. Ghallab, J. Hertzberg, and
P. Traverso, editors, Proceedings of the 6th International
Conference on Artificial Intelligence Planning and Schedul-
ing (AIPS’02), pages 274–283, Toulouse, France, April
2002. Morgan Kaufmann.
Patrick Eyerich and Malte Helmert. Stronger abstraction
heuristics through perimeter search. In Daniel Borrajo, Si-
mone Fratini, Subbarao Kambhampati, and Angelo Oddi,
editors, Proceedings of the 23rd International Conference
on Automated Planning and Scheduling (ICAPS’13), pages
303–307, Rome, Italy, 2013. AAAI Press.
Ariel Felner and Nir Ofek. Combining perimeter search and
pattern database abstractions. In Ian Miguel and Wheeler
Ruml, editors, Proceedings of the 7th International Sym-
posium on Abstraction, Reformulation, and Approximation
(SARA-07), volume 4612 of Lecture Notes in Computer Sci-
ence, pages 155–168, Whistler, Canada, 2007. Springer-
Verlag.
Patrik Haslum, Adi Botea, Malte Helmert, Blai Bonet, and
Sven Koenig. Domain-independent construction of pat-
tern database heuristics for cost-optimal planning. In Adele
Howe and Robert C. Holte, editors, Proceedings of the 22nd
National Conference of the American Association for Arti-
ficial Intelligence (AAAI’07), pages 1007–1012, Vancouver,
BC, Canada, July 2007. AAAI Press.
Malte Helmert, Patrik Haslum, and Jörg Hoffmann. Flex-
ible abstraction heuristics for optimal sequential planning.
In Mark Boddy, Maria Fox, and Sylvie Thiebaux, editors,
Proceedings of the 17th International Conference on Au-
tomated Planning and Scheduling (ICAPS’07), pages 176–
183, Providence, Rhode Island, USA, 2007. Morgan Kauf-
mann.
Malte Helmert, Patrik Haslum, Jörg Hoffmann, and Raz Nis-
sim. Merge & shrink abstraction: A method for generating
lower bounds in factored state spaces. Journal of the Asso-
ciation for Computing Machinery, 61(3), 2014.
Malte Helmert. The Fast Downward planning system. Jour-
nal of Artificial Intelligence Research, 26:191–246, 2006.
Peter Kissmann and Stefan Edelkamp. Improving cost-

optimal domain-independent symbolic planning. In Wol-
fram Burgard and Dan Roth, editors, Proceedings of the 25th
National Conference of the American Association for Artifi-
cial Intelligence (AAAI’11), pages 992–997, San Francisco,
CA, USA, July 2011. AAAI Press.
Peter Kissmann. Symbolic Search in Planning and General
Game Playing. PhD thesis, Universität Bremen, 2012.
Kenneth L. McMillan. Symbolic Model Checking. Kluwer
Academic Publishers, 1993.
Raz Nissim, Jörg Hoffmann, and Malte Helmert. Comput-
ing perfect heuristics in polynomial time: On bisimulation
and merge-and-shrink abstraction in optimal planning. In
Toby Walsh, editor, Proceedings of the 22nd International
Joint Conference on Artificial Intelligence (IJCAI’11), pages
1983–1990. AAAI Press/IJCAI, 2011.
Silvan Sievers, Martin Wehrle, and Malte Helmert. Gen-
eralized label reduction for merge-and-shrink heuristics. In
Carla E. Brodley and Peter Stone, editors, Proceedings of the
28th AAAI Conference on Artificial Intelligence (AAAI’14),
pages 2358–2366, Austin, Texas, USA, January 2014. AAAI
Press.
Álvaro Torralba and Vidal Alcázar. Constrained symbolic
search: On mutexes, BDD minimization and more. In Malte
Helmert and Gabriele Röger, editors, Proceedings of the 6th
Annual Symposium on Combinatorial Search (SOCS’13),
pages 175–183. AAAI Press, 2013.
Álvaro Torralba and Jörg Hoffmann. Simulation-based ad-
missible dominance pruning. In Qiang Yang, editor, Pro-
ceedings of the 24th International Joint Conference on Ar-
tificial Intelligence (IJCAI’15), pages 1689–1695. AAAI
Press/IJCAI, 2015.
Álvaro Torralba and Peter Kissmann. Focusing on what re-
ally matters: Irrelevance pruning in merge-and-shrink. In
Levi Lelis and Roni Stern, editors, Proceedings of the 8th
Annual Symposium on Combinatorial Search (SOCS’15),
pages 122–130. AAAI Press, 2015.
Álvaro Torralba, Stefan Edelkamp, and Peter Kissmann.
Transition trees for cost-optimal symbolic planning. In
Daniel Borrajo, Simone Fratini, Subbarao Kambhampati,
and Angelo Oddi, editors, Proceedings of the 23rd Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS’13), pages 206–214, Rome, Italy, 2013. AAAI
Press.
Álvaro Torralba, Carlos Linares López, and Daniel Borrajo.
Symbolic merge-and-shrink for cost-optimal planning. In
Francesca Rossi, editor, Proceedings of the 23rd Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’13),
pages 2394–2400. AAAI Press/IJCAI, 2013.
Álvaro Torralba, Carlos Linares López, and Daniel Borrajo.
Abstraction heuristics for symbolic bidirectional search. In
Subbarao Kambhampati, editor, Proceedings of the 25th In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI’16). AAAI Press/IJCAI, 2016.
Álvaro Torralba. Symbolic Search and Abstraction Heuris-
tics for Cost-Optimal Planning. PhD thesis, Universidad
Carlos III de Madrid, 2015.

MS-Unsat and SimulationDominance: Merge-and-Shrink and Dominance
Pruning for Proving Unsolvability

Álvaro Torralba, Jörg Hoffmann, Peter Kissmann
Saarland University

Saarbrücken, Germany
{torralba,hoffmann}@cs.uni-saarland.de, kissmann@googlemail.com

Abstract

This paper describes three different planners that participated
in the 2016 unsolvability International Planning Competi-
tion (IPC). They use the Merge-and-Shrink (M&S) frame-
work in different ways. MS-unsat tailors M&S to derive per-
fect unsolvability abstractions, proving unsolvability without
any search. MS-unsat-irr uses the same approach with irrele-
vance pruning techniques to eliminate transitions and opera-
tors from the planning task. SimulationDominance performs
a search using simulation-based dominance and irrelevance
pruning, making use of M&S heuristics and hmax as dead-
end detectors.

Introduction
Abstractions map the state space of the problem into a
smaller abstract state space. They are commonly used to
derive admissible heuristics for cost-optimal planning, by
using the optimal distance in the abstract state space as
an admissible estimation for the original problem. Abstrac-
tion techniques are very promising for proving unsolvability
since proving that any abstraction is unsolvable is a suffi-
cient condition for proving unsolvability (Bäckström et al.
2013). The question is how to design suitable abstractions
for the problem at hand.

Merge-and-shrink (M&S) is a framework for deriving
abstractions in a flexible way. It was originally devised
for model-checking (Dräger et al. 2006; 2009) and later
adapted to planning (Helmert et al. 2007; 2014; Sievers et al.
2014). The behavior of M&S is determined by the shrinking
and merging strategies. Some shrinking strategies are safe,
meaning that they preserve plan-existence so that the result-
ing abstraction is solvable if and only if the original prob-
lem is (Hoffmann et al. 2014). If non-safe shrinking is used,
the resulting abstractions can be used as dead-end detector
heuristics in a A∗ search.

Another further use of M&S was to derive a set of transi-
tion systems in order to compute a dominance relation (Tor-
ralba and Hoffmann 2015). This dominance relation can
be used for dominance pruning during search, eliminating
states such that another “at least as good” state is known.
Also, this dominance relation can be used for irrelevance
pruning, removing transitions during the M&S process or
even planning actions while preserving at least one optimal
plan (Torralba and Kissmann 2015).

In this paper we present three different planners. MS-
unsat employs M&S with safe shrinking to prove unsolv-
ability without any search on the original state space. MS-
unsat-irr uses the same strategy as MS-unsat, plus irrel-
evance pruning. The SimulationDominance planner uses
search with simulation-based dominance and irrelevance
pruning, hmax, and a set of M&S heuristics. The core ideas
of these planners were introduced in previous work (Hoff-
mann et al. 2014; Torralba and Hoffmann 2015; Torralba and
Kissmann 2015). This paper provides a general overview
of the related literature and describes the configuration we
chose for the planners.

Merge-and-Shrink
Merge-and-shrink is a framework to construct abstraction
functions (Helmert et al. 2007; 2014). M&S works with a
set of transition systems, initialized with the atomic abstrac-
tions, i.e. projections onto single state variables. Then, it
interleaves merging steps, in which two transition systems
are replaced by their synchronized product, with shrinking
steps, which apply abstraction to keep the size of the tran-
sitions systems at bay. The algorithm stops when only one
transition system remains and this is guaranteed to be an
abstraction of the original problem. The algorithm depends
on two strategies. The shrinking strategy selects how to ap-
ply abstraction to reduce the size of the transition systems.
The merging strategy selects which two transition systems
to merge at every step.

Shrinking strategies
Shrinking strategies decide which states to aggregate in or-
der to reduce the size of the transition systems. The most
popular shrinking strategy is bisimulation (Nissim et al.
2011), which computes the coarsest goal-preserving bisim-
ulation relation and aggregates states that are bisimilar. An
important property of bisimulation is that, if only bisimula-
tion shrinking is applied at every step, the resulting transition
system is a bisimulation of the original planning task. Since
bisimulation preserves goal-distance, the resulting heuristic
will be perfect and cost-optimal planning can be decided
without any search. Exact label reduction aggregates some
labels while preserving the structure of the state space, in-
creasing the shrinking achieved by bisimulation while pre-
serving its useful properties.

However, when only plan existence matters, one can fur-
ther shrink the transition systems while keeping a perfect
heuristic such that the abstraction is solvable if and only if
the original problem is. Hoffmann et al. (2014) introduced
safe shrinking strategies based on the concept of own-labels,
i.e. labels that only affect a single transition system and have
no preconditions or effects on the rest. Own-path shrinking
aggregates all abstract states in a cycle of own-labeled tran-
sitions. Intuitively, since those transitions can be performed
with no preconditions or effects on the rest of the problem
those abstract states are interchangeable and can be aggre-
gated. Moreover, if all goal variables have been merged in a
transition system, states with an own-labeled path to a goal
state can be aggregated since they are always solvable. Own-
path and bisimulation shrinking are safe shrinking strategies,
so if no other shrinking is used, the resulting heuristic is the
unsolvability-perfect heuristic so that it can decide whether
the problem is solvable without any search.

If the size of the abstraction is still too large, other approx-
imations can be used, such as greedy bisimulation (Nissim
et al. 2011) or K-catching bisimulation (Katz et al. 2012).
We use the approximate bisimulation strategy introduced by
Nissim et al., in which they set a maximum limit for the ab-
straction size.

Merge strategies
Merge strategies can be classified into linear and non-linear
merge strategies. Linear merge strategies are characterized
by a variable ordering, merging an atomic abstraction at ev-
ery iteration of the algorithm. The first merge strategies were
linear merge strategies based on causal graph (Knoblock
1994; Helmert et al. 2007). Hoffmann et al. (2014) made
an empirical study of 81 different linear merge strategies for
proving unsolvability, based on the following criteria:
• Tr, TrOwn, TrGoal, TrOwnGoal: Maximize number of

transitions whose labels are relevant for both transition
systems. If own is activated, ignore transitions that are not
own-labeled. If goal is activated considers only transitions
going into a goal state.

• CG, CGRoot, and CGLeaf: Prefer variables with an out-
going causal graph arc to an already selected variable. If
there are several such variables prefer the one ordered be-
fore (CGRoot) or behind (CGLeaf) in the strongly con-
nected components of the causal graph. It may use the
complete causal graph (Com) or only pre-eff edges.

• LevelRoot and LevelLeaf: Derived from FD’s full linear
order (Helmert 2006). LevelRoot prefers variables “clos-
est to be causal graph roots”, and LevelLeaf prefers vari-
ables “closest to be causal graph leaves”.

• Goal: Prefer goal variables over non-goal variables.
Sievers et al. (2014) reformulated the M&S framework

and generalized label reduction to work with non-linear
merge strategies. They also introduced in planning the DFP
non-linear merge strategy, originally used in the context of
model-checking (Dräger et al. 2006). Other relevant non-
linear merge strategy is MIASM (Fan et al. 2014). A re-
cent analysis of linear and non-linear merging strategies was
made by Sievers et al. (2016).

Simulation-Based Dominance Pruning
Dominance pruning techniques aim to avoid the exploration
of some parts of the state space, if they are proven to
be worse than others (Hall et al. 2013). This is formal-
ized in terms of a relation on the state space of the plan-
ning task, �, such that s � t implies that t is “at least
as close to the goal” as s. Our approach is based on the
well-known notion of simulation relations (Milner 1971;
Gentilini et al. 2003). A relation � is a simulation if for any
two states s, t such that s � t and any transition s l−→ s′,
exists another transition t l−→ t′ such that s′ � t′. The coars-
est goal-respecting simulation relation can be computed in
polynomial time on the size of the state space, though this is
still exponential in the size of the planning task.

In order to compute a relation in polynomial time we
follow a compositional approach in which the dominance
relation is derived from simulation relations computed on
a partition of the planning task (Torralba and Hoffmann
2015). A partition of the planning task is a set of transition
systems, Θ1, . . . ,Θk such that their synchronized product
equals the state space of the planning task. In order to derive
such partition, we use the M&S algorithm with bisimula-
tion shrinking, changing the stopping condition by forbid-
ding any merge that would exceed a maximum limit on the
number of transitions. The coarsest goal-respecting simula-
tions for each Θi,�i, can then be combined to define a dom-
inance relation on the state space of the planning task, s � t
iff αi(s) �i αi(t) for all i ∈ 1, . . . , k. However, the number
of problems in which non-trivial simulation relations exist
are limited because the transition t l−→ t′ has to use exactly
the same label as s l−→ s′.

To overcome this limitation, we introduce a relation be-
tween the labels of the transition systems. A label l′ domi-
nates l in a transition system Θi iff for any transition s l−→ s′

exists another s l′−→ s′′ such that s′ � s′′. Then, a label-
dominance simulation computes the simulation relation of
all transition systems �1, . . . ,�k simultaneously, allowing

t
l′−→ t′ to simulate s l−→ s′ if s′ � t′ and l′ dominates l on

all other transition systems. Moreover, a noop action with
no preconditions and effects is introduced in order to cap-
ture the notion of “doing nothing”. Label-dominance simu-
lation with noop actions finds coarser relations that are able
to achieve pruning in many different benchmark domains.

Once a dominance relation has been computed, in order to
perform dominance pruning during search, we keep a Binary
Decision Diagram (Bryant 1986) that represents the set of all
states dominated by any expanded state. Anytime a state is
generated, it is pruned if it is contained in such set. To avoid
unnecessary overhead, we disable dominance pruning if no
state has been pruned after 1000 expansions.

Irrelevance Pruning
Irrelevance pruning removes actions from the planning task
while preserving at least one (optimal) solution. Label-
dominance simulation relations can be used to detect such
irrelevant transitions. Subsumed transition pruning (Torralba

and Kissmann 2015) eliminates transitions s l−→ t from the
M&S transition systems if there exists another transition

from s, s l′−→ t′ that simulates it, i.e. t � t′ and l′ domi-
nates l in all other transition systems. Removing such tran-
sitions might cause some parts of the abstract state space to
become unreachable, leading to additional pruning and sim-
plification of the M&S transition systems. If all transitions
corresponding to a planning action are removed, the action
can be completely removed from the planning task while
still preserving plan existence.

Subsumed transition pruning can be interleaved with
label reduction and bisimulation shrinking but not with
other shrinking strategies such as own-path shrinking. Even
though both subsumed transition pruning and own-path
shrinking preserve solvability (so their combination does as
well) the resulting abstraction cannot safely be used to de-
tect dead-ends on the original state space. Also, applying
label reduction is not always beneficial for subsumed tran-
sition pruning so we follow three different steps, where M
is a parameter that controls how large the transition systems
are:

1. M&S with subsumed transition pruning and a limit of M
transitions. Without label-reduction or any shrinking.

2. M&S with subsumed transition pruning, label-reduction
and bisimulation shrinking. Limit of M transitions.

3. M&S with label-reduction, and own-path + bisimulation
shrinking.

If dominance pruning is used, the label-dominance simu-
lation relation is computed after the second step.

IPC Configuration
We implemented the new merge and shrinking strategies on
top of the Fast Downward Planning System (Helmert 2006)
(version from July 16th, 2014). All our planners use h2

forward and backward relevance analysis in order to elim-
inate operators and simplify the planning task prior to the
search (Alcázar and Torralba 2015).

All runs of M&S use the exact label reduction by Sievers
et al. (Sievers et al. 2014), interrupting it if it takes more
than 60 seconds. To avoid overhead, if there are more than
200 labels, label-dominance is computed only with respect
to the noop action.

MS-unsat and MS-unsat-irr
We submit two different configurations MS-unsat and MS-
unsat-irr. MS-unsat uses the best configuration reported
by Hoffmann et al. (2014), using CGRoot-Goal-LevelLeaf
merge and own-label shrinking.

MS-unsat-irr uses two runs of M&S with irrelevance
pruning. In the first one, it uses the DFP non-linear merge
strategy with irrelevance pruning with a limit of M =
50 000 transitions and 300 seconds. If the task has not been
proven unsolvable by the first run, irrelevant operators are
removed from the problem. Afterwards, it performs another
M&S run using CGRoot-Goal-LevelLeaf, and subsumed
transition pruning up to a limit of 50 000 transitions.

SimulationDominance
The SimulationDominance planner performs a search using
dominance and irrelevance pruning, and the hmax heuris-
tic (Bonet and Geffner 2001) and M&S abstractions as dead-
end detectors.

The dominance pruning relation is derived using the DFP-
merge strategy with a limit of 100 000 transitions. Then, it
uses M&S to generate a list of M&S abstractions, that are
used during the search to detect dead-ends. All M&S runs
use subsumption pruning up to M = 100 000 transitions
and set a limit of 500000 abstract states for bisimulation
on the third step. Multiple linear merge strategies are used
in a sequential fashion: TrOwnGoal-CGComLeaf-Goal, Tr,
TrOwnGoal, Tr, TrOwn, CG-Goal, CGLeaf-Goal, CGRoot-
Goal, CGComLeaf-Goal, TrOwnGoal-CGComLeaf-Goal.
All these strategies are run twice, using the LevelLeaf and
random tie-breaking, respectively. Each run of M&S may
take up to 300 seconds and the overall abstraction genera-
tion may take up to 1400 seconds, after which the search
starts.

Conclusions
In this paper, we have introduced three different papers
that participated in the 2016 edition of the unsolvability
IPC: MS-unsat, MS-unsat-irr, and SimulationDominance.
MS-unsat and MS-unsat-irr make use of M&S with a safe
shrinking strategy that allows to prove unsolvability with-
out searching the original state space. SimulationDominance
uses M&S to construct a set dead-end detection heuristics as
well as a label-dominance simulation relation used for dom-
inance and irrelevance pruning.

Acknowledgments We’d like to thank the Fast Downward
development team for sharing the latest version of their Fast
Downward Planning System and, in particular, to Silvan
Sievers, Martin Wehrle, and Malte Helmert for their work
on M&S (Sievers et al. 2014). This work was partially sup-
ported by the German Research Foundation (DFG), under
grant HO 2169/5-1, “Critically Constrained Planning via
Partial Delete Relaxation”.

References
Vidal Alcázar and Álvaro Torralba. A reminder about
the importance of computing and exploiting invariants in
planning. In Ronen Brafman, Carmel Domshlak, Patrik
Haslum, and Shlomo Zilberstein, editors, Proceedings of the
25th International Conference on Automated Planning and
Scheduling (ICAPS’15). AAAI Press, 2015.
Christer Bäckström, Peter Jonsson, and Simon Ståhlberg.
Fast detection of unsolvable planning instances using local
consistency. In Malte Helmert and Gabriele Röger, editors,
Proceedings of the 6th Annual Symposium on Combinatorial
Search (SOCS’13), pages 29–37. AAAI Press, 2013.
Blai Bonet and Héctor Geffner. Planning as heuristic search.
Artificial Intelligence, 129(1–2):5–33, 2001.

Randal E. Bryant. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on Computers,
35(8):677–691, 1986.
Klaus Dräger, Bernd Finkbeiner, and Andreas Podelski. Di-
rected model checking with distance-preserving abstrac-
tions. In Antti Valmari, editor, Proceedings of the 13th In-
ternational SPIN Workshop (SPIN 2006), volume 3925 of
Lecture Notes in Computer Science, pages 19–34. Springer-
Verlag, 2006.
Klaus Dräger, Bernd Finkbeiner, and Andreas Podelski. Di-
rected model checking with distance-preserving abstrac-
tions. International Journal on Software Tools for Technol-
ogy Transfer, 11(1):27–37, 2009.
Gaojian Fan, Martin Müller, and Robert Holte. Non-linear
merging strategies for merge-and-shrink based on variable
interactions. In Stefan Edelkamp and Roman Bartak, edi-
tors, Proceedings of the 7th Annual Symposium on Combi-
natorial Search (SOCS’14). AAAI Press, 2014.
Raffaella Gentilini, Carla Piazza, and Alberto Policriti.
From bisimulation to simulation: Coarsest partition prob-
lems. Journal of Automated Reasoning, 31(1):73–103, 2003.
David Hall, Alon Cohen, David Burkett, and Dan Klein.
Faster optimal planning with partial-order pruning. In
Daniel Borrajo, Simone Fratini, Subbarao Kambhampati,
and Angelo Oddi, editors, Proceedings of the 23rd Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’13), Rome, Italy, 2013. AAAI Press.
Malte Helmert, Patrik Haslum, and Jörg Hoffmann. Flex-
ible abstraction heuristics for optimal sequential planning.
In Mark Boddy, Maria Fox, and Sylvie Thiebaux, editors,
Proceedings of the 17th International Conference on Au-
tomated Planning and Scheduling (ICAPS’07), pages 176–
183, Providence, Rhode Island, USA, 2007. Morgan Kauf-
mann.
Malte Helmert, Patrik Haslum, Jörg Hoffmann, and Raz Nis-
sim. Merge & shrink abstraction: A method for generating
lower bounds in factored state spaces. Journal of the Asso-
ciation for Computing Machinery, 61(3), 2014.
Malte Helmert. The Fast Downward planning system. Jour-
nal of Artificial Intelligence Research, 26:191–246, 2006.
Jörg Hoffmann, Peter Kissmann, and Álvaro Torralba. “Dis-
tance”? Who Cares? Tailoring merge-and-shrink heuristics
to detect unsolvability. In Thorsten Schaub, editor, Proceed-
ings of the 21st European Conference on Artificial Intel-
ligence (ECAI’14), Prague, Czech Republic, August 2014.
IOS Press.
Michael Katz, Jörg Hoffmann, and Malte Helmert. How
to relax a bisimulation? In Blai Bonet, Lee McCluskey,
José Reinaldo Silva, and Brian Williams, editors, Pro-
ceedings of the 22nd International Conference on Auto-
mated Planning and Scheduling (ICAPS’12), pages 101–
109. AAAI Press, 2012.
Craig Knoblock. Automatically generating abstractions for
planning. Artificial Intelligence, 68(2):243–302, 1994.
Robin Milner. An algebraic definition of simulation between
programs. In Proceedings of the 2nd International Joint

Conference on Artificial Intelligence (IJCAI’71), pages 481–
489, London, UK, September 1971. William Kaufmann.
Raz Nissim, Jörg Hoffmann, and Malte Helmert. Comput-
ing perfect heuristics in polynomial time: On bisimulation
and merge-and-shrink abstraction in optimal planning. In
Toby Walsh, editor, Proceedings of the 22nd International
Joint Conference on Artificial Intelligence (IJCAI’11), pages
1983–1990. AAAI Press/IJCAI, 2011.
Silvan Sievers, Martin Wehrle, and Malte Helmert. Gen-
eralized label reduction for merge-and-shrink heuristics. In
Carla E. Brodley and Peter Stone, editors, Proceedings of the
28th AAAI Conference on Artificial Intelligence (AAAI’14),
pages 2358–2366, Austin, Texas, USA, January 2014. AAAI
Press.
Silvan Sievers, Martin Wehrle, and Malte Helmert. An anal-
ysis of merge strategies for merge-and-shrink heuristics. In
Amanda Coles, Andrew Coles, Stefan Edelkamp, Daniele
Magazzeni, and Scott Sanner, editors, Proceedings of the
26th International Conference on Automated Planning and
Scheduling (ICAPS’16). AAAI Press, 2016.
Álvaro Torralba and Jörg Hoffmann. Simulation-based ad-
missible dominance pruning. In Qiang Yang, editor, Pro-
ceedings of the 24th International Joint Conference on Ar-
tificial Intelligence (IJCAI’15), pages 1689–1695. AAAI
Press/IJCAI, 2015.
Álvaro Torralba and Peter Kissmann. Focusing on what re-
ally matters: Irrelevance pruning in merge-and-shrink. In
Levi Lelis and Roni Stern, editors, Proceedings of the 8th
Annual Symposium on Combinatorial Search (SOCS’15),
pages 122–130. AAAI Press, 2015.

Decoupled Search for Proving Unsolvability

Daniel Gnad and Álvaro Torralba and Jörg Hoffmann Martin Wehrle
Saarland University University of Basel

Saarbrücken, Germany Basel, Switzerland
{gnad, torralba, hoffmann}@cs.uni-saarland.de martin.wehrle@unibas.ch

Introduction

Decoupled State Space Search is a recently introduced
method to handle the well-known state space explosion
problem (Gnad and Hoffmann 2015; Gnad, Hoffmann, and
Domshlak 2015). By exploiting the structure of the prob-
lem within the search – as opposed to doing that within a
heuristic function guiding the search – the size of the decou-
pled state space can be exponentially smaller than that of
the standard state space. Decoupled search achieves that by
partitioning the task into several components, called factors,
trying to identify a star topology, with a single center factor
that interacts with multiple leaf factors. By enforcing such a
star structure, and thereby simplifying the dependencies be-
tween the components, decoupled search has proved to be
very efficient and able to compete with other state-of-the-art
planners in both satisficing and optimal search. We have also
seen good performance of decoupled search in the limited
unsolvable benchmarks, available prior to this competition.
Whether these results translate to the competition is mainly
dependent on the structure of the used domains. Since the
currently implemented method to identify factorings is only
capable of detecting so-called X-shape profiles, we cannot
perform decoupled search in absence of such structure. In
such a case, we simply run standard search, instead. As a
side remark, this limitation is merely due to the preliminary
methods to identify suitable factorings. In general, every
task has a star topology and can be tackled by decoupled
search.

Depending on the particular factoring profile that has been
identified, we also enable extensions of decoupled search
that have recently been developed, namely partial-order re-
duction (POR) (Gnad, Wehrle, and Hoffmann 2016) and
dominance pruning (Torralba et al. 2016). POR via strong
stubborn sets is a technique that is well-known in standard
search and originates from the model checking community
(Valmari 1989; Alkhazraji et al. 2012; Wehrle and Helmert
2012; 2014). Dominance pruning identifies states that can be
safely discarded, without affecting completeness (and opti-
mality). Both of these techniques can only be used if the
identified factoring has the form of a fork. We also enable
POR, whenever our factoring method does not find a suit-
able profile.

Preliminaries
We use a finite-domain state variable formalization of plan-
ning (e. g. (Bäckström and Nebel 1995; Helmert 2006)). A
finite-domain representation planning task, short FDR task,
is a quadruple Π = 〈V,A, I,G〉. V is a set of state vari-
ables, where each v ∈ V is associated with a finite domain
D(v). We identify (partial) variable assignments with sets of
variable/value pairs. A complete assignment to V is a state.
I is the initial state, and the goal G is a partial assignment
to V . A is a finite set of actions. Each action a ∈ A is a tu-
ple 〈pre(a), eff(a)〉 where the precondition pre(a) and effect
eff(a) are partial assignments to V .

For a partial assignment p, V(p) ⊆ V denotes the sub-
set of state variables instantiated by p. For any V ′ ⊆ V(p),
by p[V ′] we denote the assignment to V ′ made by p. An
action a is applicable in a state s if pre(a) ⊆ s, i. e., if
s[v] = pre(a)[v] for all v ∈ V(pre(a)). Applying a in s
changes the value of each v ∈ V(eff(a)) to eff(a)[v], and
leaves s unchanged elsewhere; the outcome state is denoted
sJaK. We also use this notation for partial states p: by pJaK
we denote the assignment over-writing p with eff(a) where
both p and eff(a) are defined. The outcome state of applying
a sequence of (respectively applicable) actions is denoted
sJ〈a1, . . . , an〉K. A plan for Π is an action sequence s.t.
G ⊆ IJ〈a1, . . . , an〉K. For the task of proving a task un-
solvable, we are only interested in the existence of a plan
that transforms the initial state I to a goal state sG, with
sG[v] = G[v] for all v ∈ V(G). We consequently ignore
action costs in the following.

To identify the required structure for factoring the vari-
ables, we need the notion of the causal graph (e. g.
(Knoblock 1994; Jonsson and Bäckström 1995; Brafman
and Domshlak 2003; Helmert 2006)). The causal graph of
a planning task captures state variable dependencies. We
use the commonly employed definition in the FDR context,
where the causal graph CG is a directed graph over vertices
V , with an arc from v to v′, which we denote (v → v′),
if v 6= v′ and there exists an action a ∈ A such that
(v, v′) ∈ [V(eff(a))∪V(pre(a))]×V(eff(a)). In words, the
causal graph captures precondition-effect as well as effect-
effect dependencies, as result from the action descriptions.
A simple intuition is that, whenever (v → v′) is an arc in
CG, changing the value of v′ may involve changing that of
v as well. We assume for simplicity that CG is weakly con-

nected (this is wlog: else, the task can be equivalently split
into several independent tasks).

Decoupled Search

We run decoupled search like introduced by Gnad, Hoff-
mann, and Domshlak (2015), with the same factoring
strategy and search settings, i. e., optimized for satisficing
search. Since there is no difference in the main algorithm,
we only give a brief summary, here.

Prior to search, the factoring of the input task Π is per-
formed, by analyzing its causal graph. Denote by FSCC the
factoring whose factors are the strongly connected compo-
nents (SCC) of CG. The interaction graph IG(F) of a fac-
toring F is the directed graph whose vertices are the factors,
with an arc (F → F ′) if F 6= F ′ and there exist v ∈ F
and v′ ∈ F ′ such that (v → v′) is an arc in CG. The actual
factoring works as follows: In a first step, each leaf in FSCC

will be assigned to a single leaf factor FL. If the causal
graph is not strongly connected, i. e., at least one such leaf
exists, this results in a fork factoring, where – denoting by
FC′

the remaining components – all transitions in IG(FSCC)

are of the form (FC′ → FL). In a second step, each root
from the sub-graph of IG(FSCC) that only contains the com-
ponents in FC′

is also assigned to a new leaf factor. By
FC we denote the remaining components that have not been
assigned to a leaf. Finally, all leaves FL2 detected in the sec-
ond step that introduce transitions in IG(FSCC) of the form
(FL2 → FL1) will be put back into FC , to prevent depen-
dencies across leaf factors. If leaves have been detected in
both steps and at least one of those from step 2 has not been
removed, this results in X-shape factoring with “inverted-
fork” leaves that provide preconditions for the center, and
“fork” leaves, that only have preconditions on the center
and themselves. If only in the second step leaves have been
added, this results in a pure inverted-fork factoring.

Given a factoring F with center factor FC and leaves
FL ∈ FL, decoupled search is performed as follows:

The search will only branch over center actions, i. e., those
actions affecting a variable in FC . Along such a path of cen-
ter actions πC , for each leaf factor FL, the search maintains
a set of leaf paths, i. e., actions only affecting variables of
FL, that comply with πC . Intuitively, for a leaf path πL to
comply with a center path, it must be possible to embed πL

into πC such that the FL-preconditions of all center actions
are provided by πL at the respective points in πC , and the
FC preconditions of all leaf actions are provided by πC .

A decoupled state corresponds to an end state of such a
center action sequence. The main advantage over standard
search originates from a decoupled state being able to rep-
resent exponentially many explicit states, thereby getting rid
of having to enumerate all of them. A decoupled state can
“contain” many explicit states, because by instantiating the
center with a center action sequence, the leaf factors are mu-
tually independent. Thus, the more leaves in the factoring,
the more explicit states can potentially be represented by a
single decoupled state.

Decoupled strong stubborn sets
In addition to the plain decoupled search variant outlined
above, we enable decoupled strong stubborn sets (DSSS),
when the factoring method results in a fork topology. The
usage of this technique is identical to what has been intro-
duced in Gnad, Wehrle, and Hoffmann (2016), so we don’t
give the formal details, here. DSSS are a straightforward ex-
tension of POR to the decoupled search setting, where some
care must be taken due to the specific structure of the decou-
pled state space, especially the distinction between center
and leaf actions. Like in the standard state space, it removes
transitions that will lead to different permutations of action
sequences leading to the same outcome state. The only mi-
nor difference to the original implementation is a “safety
belt”, that disables DSSS if after the first 1000 expansions,
not a single transition has been removed.

Decoupled dominance pruning
Another decoupled search extension that has only recently
been introduced is dominance pruning (Torralba et al. 2016),
where decoupled states that are dominated by other – already
visited – states can be safely discarded. We only deploy
a very lightweight pruning method, namely frontier prun-
ing. The plain decoupled search variant performs a dupli-
cate checking that can already detect certain forms of dom-
inance, in particular if two decoupled states have the same
center state and all leaf states reachable in one state are (at
most as costly) also reachable in the other. Frontier prun-
ing improves this by only comparing a subset of the reached
leaf states, those that can possibly make so far unreached
leaf states available. It has originally been developed for op-
timal planning, but can be easily adapted to become more
efficient, when optimal solutions do not matter, by replacing
the real cost of reaching a leaf state by 0, if a state has been
reached at any cost.

Additionally, we also employ a leaf simulation, originally
proposed by Torralba and Kissmann (2015), to remove su-
perfluous leaf states and leaf actions, discovering transitions
that can be replaced by other transitions, then running a
reachability check on the leaf state space. In some domains,
this can tremendously reduce the size of the leaf state spaces.

Implementation
Decoupled Search has been implemented as an extension of
the Fast Downward (FD) planning system (Helmert 2006).
By changing the low-level state representation, many of
FD’s built-in algorithms and functionality can be used with
only minor adaptations. Of particular interest for the task of
proving unsolvability are the A∗ algorithm, the hmax heuris-
tic (Bonet and Geffner 2001) for dead-end pruning, and
partial-order reduction via strong stubborn sets. On top of
the standard FD preprocessor, we perform a relevance anal-
ysis based on h2, in order to eliminate actions and simplify
the planning task prior to the search (Alcázar and Torralba
2015). In some domains, this relevance analysis is even
powerful enough to detect a task unsolvable without actu-
ally having to start the search.

All our search variants run A∗ using hmax. The actual
search configuration depends on the identified factoring F
as follows:

(i) |F| ≤ 2 (at most 1 leaf factor): Run standard search
using strong stubborn sets.

(ii) |F| > 2 (at least 2 leaf factor) and F is a fork fac-
toring: Run decoupled search using decoupled strong
stubborn sets, frontier dominance pruning, and leaf
simulation.

(iii) |F| > 2 (at least 2 leaf factor) and F is not a fork
factoring: Run decoupled search without extensions.

The combination of decoupled strong stubborn sets and
dominance pruning has not been formally described, before.
We are not going into this, either, but rather give the intu-
ition of why this still results in a complete search algorithm.
Given a set of actions applicable in a state, decoupled strong
stubborn sets prune the subset of these actions, that start dif-
ferent permutations of actions leading to the same outcome
state. By guaranteeing that one of these permutations appli-
cable in the current state will not be pruned, search using
strong stubborn sets remains complete (and optimal).

In contrast to that, dominance pruning removes a state s
that is dominated by another decoupled state t. By analyz-
ing the structure of the leaf factors and comparing only the
relevant leaf states of s to those of t, it can detect that all
states that are reachable from s are also (at most as costly)
reachable from t.

Putting things together, decoupled strong stubborn sets
and dominance pruning are orthogonal methods to reduce
the size of the state space – one removes transitions that cor-
respond to redundant permutations of action sequences, the
other removes states that cannot reach anything that could
not be reached before. Consequently, it is safe to com-
bine both, resulting in a state space that can be significantly
smaller than when only using one of the techniques.

The case distinction outlined above allows a flexible adap-
tation to the given input problem, and since computing the
factoring in most tasks finishes within split seconds, there
is (almost) no computational overhead to determine which
search variant to use.

Acknowledgments. This work was partially supported by
the German Research Foundation (DFG), under grant HO
2169/6-1, “Star-Topology Decoupled State Space Search”.

References
Alcázar, V., and Torralba, Á. 2015. A reminder about the im-
portance of computing and exploiting invariants in planning.
In Brafman, R.; Domshlak, C.; Haslum, P.; and Zilberstein,
S., eds., Proceedings of the 25th International Conference
on Automated Planning and Scheduling (ICAPS’15). AAAI
Press.
Alkhazraji, Y.; Wehrle, M.; Mattmüller, R.; and Helmert,
M. 2012. A stubborn set algorithm for optimal planning. In
Raedt, L. D., ed., Proceedings of the 20th European Confer-
ence on Artificial Intelligence (ECAI’12), 891–892. Mont-
pellier, France: IOS Press.

Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1–2):5–33.
Brafman, R., and Domshlak, C. 2003. Structure and com-
plexity in planning with unary operators. Journal of Artifi-
cial Intelligence Research 18:315–349.
Gnad, D., and Hoffmann, J. 2015. Beating LM-cut with
hmax (sometimes): Fork-decoupled state space search. In
Brafman, R.; Domshlak, C.; Haslum, P.; and Zilberstein,
S., eds., Proceedings of the 25th International Conference
on Automated Planning and Scheduling (ICAPS’15). AAAI
Press.
Gnad, D.; Hoffmann, J.; and Domshlak, C. 2015. From fork
decoupling to star-topology decoupling. In Lelis, L., and
Stern, R., eds., Proceedings of the 8th Annual Symposium
on Combinatorial Search (SOCS’15). AAAI Press.
Gnad, D.; Wehrle, M.; and Hoffmann, J. 2016. Decoupled
strong stubborn sets. In Kambhampati, S., ed., Proceedings
of the 25th International Joint Conference on Artificial In-
telligence (IJCAI’16). AAAI Press/IJCAI.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Jonsson, P., and Bäckström, C. 1995. Incremental planning.
In European Workshop on Planning.
Knoblock, C. 1994. Automatically generating abstractions
for planning. Artificial Intelligence 68(2):243–302.
Torralba, Á., and Kissmann, P. 2015. Focusing on what
really matters: Irrelevance pruning in merge-and-shrink. In
Lelis, L., and Stern, R., eds., Proceedings of the 8th Annual
Symposium on Combinatorial Search (SOCS’15), 122–130.
AAAI Press.
Torralba, Á.; Gnad, D.; Dubbert, P.; and Hoffmann, J. 2016.
On state-dominance criteria in fork-decoupled search. In
Kambhampati, S., ed., Proceedings of the 25th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’16).
AAAI Press/IJCAI.
Valmari, A. 1989. Stubborn sets for reduced state space gen-
eration. In Proceedings of the 10th International Conference
on Applications and Theory of Petri Nets, 491–515.
Wehrle, M., and Helmert, M. 2012. About partial order
reduction in planning and computer aided verification. In
Bonet, B.; McCluskey, L.; Silva, J. R.; and Williams, B.,
eds., Proceedings of the 22nd International Conference on
Automated Planning and Scheduling (ICAPS’12). AAAI
Press.
Wehrle, M., and Helmert, M. 2014. Efficient stubborn sets:
Generalized algorithms and selection strategies. In Chien,
S.; Do, M.; Fern, A.; and Ruml, W., eds., Proceedings of the
24th International Conference on Automated Planning and
Scheduling (ICAPS’14). AAAI Press.

Django: Unchaining the Power of Red-Black Planning

Daniel Gnad and Marcel Steinmetz and Jörg Hoffmann
Saarland University

Saarbrücken, Germany
{gnad, steinmetz, hoffmann}@cs.uni-saarland.de

Abstract

Red-black planning is a powerful method, allowing in princi-
ple to interpolate smoothly between fully delete relaxed plan-
ning, and real (completely unrelaxed) planning. Alas, the
method has been chained to the use as a heuristic function,
necessitating to compute a red-black plan on every search
state, entailing an exclusive focus on tractable fragments. The
Django system unleashes red-black planning on the problem
of proving unsolvability within the red-black relaxation. We
introduce red-black state space search that can solve arbitary
red-black planning problems, and we prove unsolvability by
iteratively painting more and more red variables black.

Introduction
Red-black planning (Katz, Hoffmann, and Domshlak
2013b) interpolates between fully delete relaxed planning,
and real (completely unrelaxed) planning, by selecting a
subset of state variables – the “red” ones – which take the
delete-relaxed semantics, accumulating their values; while
the remaining state variables – the “black” ones – retain the
original value-switching semantics. If all variables are red,
we have a delete relaxation, if all variables are black, we
have the original planning task. In between we have a hy-
brid red-black relaxation more informed than the delete re-
laxation.

The method has so far been used for the design of heuris-
tic functions (Katz, Hoffmann, and Domshlak 2013b; 2013a;
Katz and Hoffmann 2013; Gnad and Hoffmann 2015b;
Domshlak, Hoffmann, and Katz 2015), computing a red-
black plan on every search state akin to the wide-spread
relaxed plan heuristic (Hoffmann and Nebel 2001). Natu-
rally, this entails an exclusive focus on tractable fragments
of red-black plan generation. Our key observation in the
Django system is that red-black relaxation can be useful
also for proving unsolvability within the relaxation. This is
promising because the red variables still carry the informa-
tion “what needs to be done”, while avoiding full enumer-
ation across these variables. Consider, for example, a truck
with restricted fuel having to transport some packages. If
we delete-relax (“paint red”) the packages, they still need to
be transported, to the effect that, if there is insufficient fuel,
then the red-black relaxation is unsolvable. Contrast the lat-
ter with projections, recently suggested for proving unsolv-
ability (Bäckström, Jonsson, and Ståhlberg 2013): project-

ing away the packages, the task becomes trivially solvable
as there is no goal anymore.

Django therefore unleashes the power of red-black plan-
ning, through red-black state space search, which mixes
standard forward state space search with standard delete-
relaxed planning methods (Hoffmann and Nebel 2001), es-
sentially by searching over black-variable states and aug-
menting each state transition with a delete-relaxed planning
step over the red variables. If all variables are black, this
defaults to forward search. If all variables are red, it defaults
to delete-relaxed planning. In between, we have a hybrid.
Given this hybrid, we can prove unsolvability by fixing a
variable order, and then, starting with all variables being red,
painting more and more variables black until the red-black
relaxation is unsolvable.

On the unsolvable benchmarks introduced by Hoffmann
et al. (2014), this method excels in 3 domains and thus, over-
all, substantially improves the state of the art, at least when
using our new better variable ordering strategy, not the old
one that we had designed at IPC planner submission time.
The authors are curious to see how much luck Django will
have with whatever benchmarks will be used in the Unsolv-
ability IPC 2016. But whatever happens, Django, remember:
After the showers, the sun will be shining . . . 1

Django
Framework
Django is implemented on top of FD (Helmert 2006) (who
would have guessed!). It uses the mutex-optimized prepro-
cessor by Alcazar and Torralba (2015) to get an optimized
finite-domain variable encoding.

1For the reader looking for an algorithm description fitting
“Django” as an acronym: there is none. We just like the movie.

Obviously we’re not going to go into tremendous detail
here, but let it be said that we use the finite-domain rep-
resentation (FDR) framework, notating planning tasks as
Π = (V,A, I,G). V is a set of finite-domain state variables
v, each associated with a finite domain Dv . A complete as-
signment to V is a state. I is the initial state, and the goal G
is a partial assignment to V . A is a finite set of actions, each
a ∈ A being a pair (prea, effa) of the action’s precondition
prea and effect effa, each a partial assignment to V .

The semantics of a planning task Π is defined in terms of
its state space, which is a (labeled) transition system ΘΠ =
(S, T, s0, SG) defined in the usual manner, S being the set
of all states, T being the transitions given by the actions A,
s0 being the initial state, and SG being the goal states. A
plan is a path from s0 to some state in SG. We want to prove
that no plan exists.

Red-Black Planning
The delete relaxation can be captured in FDR in terms of
state variables that accumulate, rather than switch between,
their values. Red-black planning is the partial delete re-
laxation resulting from doing so only for a subset of the
state variables (the “red” ones), keeping the original value-
switching semantics for the others (the “black” ones) (Katz,
Hoffmann, and Domshlak 2013b; Domshlak, Hoffmann,
and Katz 2015).

Formally, a red-black planning task is a tuple Π =
(V B, V R, A, I,G). Here, V B are the black variables, and
V R are the red ones. We require that V B ∩ V R = ∅, and
given the overall set of variables V := V B ∪ V R, the re-
mainder of the task syntax is defined exactly as before. The
major change lies in the semantics. Red-black states sRB as-
sign each variable v a subset sRB(v) ⊆ Dv of its possible
values. Initially, in the red-black initial state, the value sub-
set contains the single value I(v). If v is a black variable,
then action effects on v overwrite v’s previous value, so that
sRB(v) always contains exactly one element; if v is a red
variable, then action effects on v are accumulated into the
previous value subset. A red-black goal state is one where,
for every goal variable v, G(v) ∈ sRB(v).

Given an FDR task Π = (V,A, I,G), a painting is a
partition of the variables V into two subsets, V B and V R.
Given a painting, a plan for the red-black planning task
(V B, V R, A, I,G) is called a red-black plan for Π.

Red-Black State Space Search
Red-black planning generalizes both, delete-relaxed plan-
ning and real planning, so in particular deciding red-black
plan existence is, in general, PSPACE-hard. To solve arbi-
trary red-black planning problems, we need a search algo-
rithm: red-black state space search.

Essentially, the search branches only over those actions
affecting black variables, while handling the other actions
through red forward fixed points associated with individual
state transitions. To keep this paper crisp, we give an outline
only, and we refer the masochistic and/or interested reader
to our SOCS’16 paper for the details (Gnad et al. 2015).

Like typical relaxed planning algorithms, red-black state
space search consists of a forward phase, followed by a

backward phase. The forward phase chains forward until
reaching the goal (“state space search with a relaxed plan-
ning graph at each transition”), and the backward phase ex-
tracts a red-black plan (“extracting the solution path with a
relaxed plan extraction step at each transition”).

It is cumbersome to spell this out formally. But it should
be possible to get an intuition across. Without actually intro-
ducing the notations, consider this (slightly simplified) defi-
nition from our SOCS’16 paper:

Definition 1 (RB State Space) Let Π = (V B, V R, A, I,G)
be an RB planning task. The red-black state space
of Π, denoted ΘRB

Π , is the transition system ΘRB =
(SRB, TRB, sRB0 , SRB

G) where:
(i) SRB is the set of all red-black states.

(ii) sRB0 is the red-black initial state.
(iii) SRB

G contains the red-black states sRB where F+(sRB)
is a red-black goal state.

(iv) TRB is the set of transitions sRB a−→ tRB where a affects
at least one black variable, a is applicable toF+(sRB),
and tRB = outcomeState(F+(sRB), a).

The notation “F+(sRB)” denotes the extension of the red-
black state sRB with all those values of red variables that can
be reached from sRB by applying actions with red effects
only. In other words, F+(sRB) adds, into the value sub-
sets sRB(v) of the red variables v, the red-planning fixed
point (“delete-relaxed fixed-point layer in a relaxed plan-
ning graph”), when considering only those red-effect actions
whose black preconditions are satisfied in sRB.

Given this, item (iii) just says that we can stop at sRB if
its red fixed point contains the goal. Item (iv) says that, to
transition from one red-black state sRB to another tRB via
action a, we first execute the red fixed point on sRB, to ob-
tain F+(sRB); then we check whether a is applicable to
F+(sRB); and if so, we simply apply a to that fixed point,
treating F+(sRB) like any other red-black state.

Say now that the forward phase has found a path to the
goal, i. e., a path π = 〈sRB0 , a0, s

RB
1 , . . . , an−1, s

RB
n 〉 in

ΘRB
Π , where sRBn ∈ SRB

G . In standard state space search,
we would simply return the actions a0, . . . , an−1 labeling
the path. But in our case here, that would account only for
the black-affecting actions. To collect the red-affecting ac-
tions, at each transition sRBi

a−→ sRBi+1 along π, we need to ex-
tract a red plan supporting the subgoals needed at time i+1,
propagating new needed subgoals to time i. The subgoals
needed at time n are simply the red goals; each red-plan ex-
traction step is a standard relaxed plan extraction step on the
red fixed point leading from i to i + 1; once we reach time
0, we can schedule all the red plans along a0, . . . , an−1 and
have a red-black plan.

The reader might have noticed that the author just got car-
ried away – this paper, competition, and planning system
being exclusively about proving unsolvability, we will never
actually get to the backward red-black plan extraction phase,
or if we do, then we know that the relaxation is not informed
enough and we need to paint more variables black. Apolo-
gies for the inconvenience; then again, the backward phase
is part of red-black state space search, and that search also

has other possible uses (cf. our SOCS’16 paper), so the au-
thor is right now choosing to just leave this in.

In any case, coming back to what does matter for our pur-
pose here: it is easy to see that, if the goal cannot be reached
in ΘRB

Π , then Π is unsolvable. This is simply because red-
black relaxation preserves plans, and goal reachability in
ΘRB

Π is equivalent to red-black plan existence.

Wrapping it Up with a Variable Ordering Strategy
To turn the above into an actual automatic planner, we need
to decide how to actually paint the variables – which ones
are to be red, which ones are to be black?

Previous work designed such painting strategies for the
purpose of heuristic functions. For the purpose of proving
unsolvability, matters are different in that it makes a lot of
sense to merely try a painting, and, if it does not succeed,
try another one. The simplest possible way to do this – or
at least these authors could not think of a simpler one – is
to start with all variables being red, then iteratively check
whether there is a red-black plan; if no, stop (unsolvability
proved); else, pick a red variable v, paint it black, and iterate.
The question then just remains how to pick the next variable.

At the time of planner submission, the authors simplified
even this simple question, fixing a variable order a priori,
not taking into account any new information found during
the process. Specifically, we used a variable ordering strat-
egy that we denote as RBb, the “b” standing for breadth-
first (we leave it to the reader’s imagination what the “RB”
may be for). The strategy builds the DAG of strongly con-
nected components (SCC) of the input task’s causal graph,
and processes these (i. e., orders the variables) in a breadth-
first manner, from root SCCs to leaf SCCs.

We later on realized that it is actually a good idea to take
information found during the process into account, specif-
ically conflicts in the red-black plan found in the previous
iteration. The notion of conflicts is inspired by painting
strategies underlying heuristic functions (Domshlak, Hoff-
mann, and Katz 2015). Given a red variable v, a conflict on
v is an action in the red-black plan whose precondition on
v would not be satisfied when painting v black. The idea is
to select, as the next red v to be painted black, one with a
maximal number of conflicts. We denote this by RBc, and
we denote by RBbc the strategy that applies RBb and breaks
ties, for inclusion of the next variable within an SCC, by the
maximal number of conflicts.

And this is all there is to say about Django . . .
. . . except, catering for the unlikely case where Django

does not work on the benchmarks wisely chosen by the IPC
organizers, let us show off a little bit with our results on the
previous benchmarks by Hoffmann et al. (2014):

Own Experiments
Table 1 shows coverage data, i. e., the number of instances
proved unsolvable. We compare against a selection of ap-
proaches from Hoffmann et al.’s (2014) extensive experi-
ments, namely blind search (“Bli”) and search with hmax

as canonical simple methods; exhaustive testing of small
projections (“SP”) as per Bäckström et al. (2013) to com-
pare against this recently proposed method; constrained

Domain # Bli hmax SP BDD MS1 MS2 RBb RBc RBbc BP DS

Bottleneck 25 10 21 10 15 10 21 12 25 25 5 0
3UNSAT 30 15 15 0 15 15 15 15 15 15 5 0
Mystery 9 2 2 6 9 9 6 7 2 2 0 0
NoMystery 25 0 0 8 14 25 25 24 24 24 14 24
PegSol 24 24 24 0 24 24 24 12 22 22 8 0
Rovers 25 0 1 3 10 17 9 25 11 25 0 0
Tiles 20 10 10 10 10 10 10 10 10 10 10 0
TPP 25 5 5 2 1 9 9 2 1 1 0 0∑

183 66 78 39 98 119 119 107 110 124 42 24

Table 1: Number of instances proved unsolvable. Best val-
ues highlighted in boldface. Left part: state of the art as per
Hoffmann et al. (2014). Middle part: red-black state space
search. Right part: particular comparisons. Explanations
and abbreviations see text.

BDDs (Torralba and Alcázar 2013) (“BDD”) as a compet-
itive symbolic method (named “BDD H2 in (Hoffmann,
Kissmann, and Torralba 2014)); as well as the two most
competitive variants of merge-and-shrink by Hoffmann et
al., namely their “Own+A H2” (here: “MS1”) and their
“Own+K N100k M100k hmax” (here: “MS2”). This selec-
tion of planners represents the state of the art – we should
really say: represented the state of the art at planner submis-
sion time – in proving unsolvability in planning.

Our best configuration, RBbc, beats the state of the art in
overall coverage. It excels in Bottleneck and Rovers, where
red-black state space search is the only method able to solve
all instances. In NoMystery, together with merge-and-shrink
and DS (regarding which: see below), it performs way better
than all other planners. In the remaining domains, the per-
formance of red-black state space search is not as remark-
able, about in the mid-range in Mystery, PegSol, and TPP,
and on par with other planners in 3UNSAT and Tiles where
no planner seems to manage to do something interesting.

The “BP” and “DS” columns stand for black-projection,
respectively decoupled search (Gnad and Hoffmann 2015a;
2015b). BP is like our incremental RBbc method but con-
sidering the black variables only. It follows RBbc’s variable
ordering, until RBbc terminates; if the projection onto the
black variables is at this point still solvable, then BP contin-
ues with the RBb variable ordering. BP has not been previ-
ously explored, and is included here to show the benefit of
considering red variables in addition to the black ones. The
data clearly attests to that benefit.

DS identifies a partition of the variables inducing a “star
topology”, then searches only over the “center” component
of the star, enumerating the possible moves for each “leaf”
component separately. We include it here because, like red-
black state space search, it can avoid the enumeration across
packages in NoMystery (each package is a leaf component).
DS is, however, limited to tasks with a useful star topology
that can be identified with the current variable partitioning
methods. The latter is rare on this benchmark set, and the
data clearly shows the benefit of not having that limitation.2

Consider finally Figure 1, a direct comparison between
red-black state space search and black-projection, as the set

2Remark by the author: Isn’t it great how one can bash one’s
own work in one’s own papers?

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
 0.1

 1

 10

 100

 1000
C

o
v
e

ra
g

e

T
im

e
 (

s
)

BP coverage
RBb coverage
RBc coverage

RBbc coverage
BP runtime

RBbc runtime

Figure 1: Coverage and average runtime of red-black state
space search, compared to black-projection, as a function of
the fraction of black variables. Explanations see text.

of black variables V B grows. This provides an in-depth view
of the advantages of taking into account the remaining vari-
ables V \ V B as red ones, rather than ignoring them com-
pletely. The coverage advantage is dramatic, as red-black
state space search can make do with much smaller sets V B.
The runtime averages are taken over the commonly solved
instances for each value of x. We see that, as expected, red-
black state space search incurs a substantial overhead for
those tasks tackled also by projection with small V B. Yet as
the V B required in projection grows larger, that disadvantage
becomes smaller and finally disappears completely.

Conclusion
Django is unchained! Red-black planning has finally es-
caped the cage of computational tractability! What more
is there to say?

Well, let us say that this is the beginning, not the end, of
the story (oops I almost said “movie” here). Django can still
be improved in a gazillion ways, including but not limited to:
better variables ordering strategies; re-using state space in-
formation (e. g. dead-end regions) from previous iterations;
adaptive paintings choosing red/black variables depending
on state; etc. It should also be noted that Django is not
doomed to just prove unsolvability – if the red-black plan
in some iteration happens to be a real plan, then we can also
stop. The question then is how to fruitfully interleave both
purposes, choosing the next black variable, perhaps, based
on the current hypothesis whether the task will turn out to
be solvable or unsolvable.

Figure 2: THE END.

Acknowledgments. This work was partially supported
by the German Research Foundation (DFG), under grant
HO 2169/5-1, “Critically Constrained Planning via Partial
Delete Relaxation”.

References
Alcázar, V., and Torralba, Á. 2015. A reminder about the im-
portance of computing and exploiting invariants in planning.
In Brafman, R.; Domshlak, C.; Haslum, P.; and Zilberstein,
S., eds., Proceedings of the 25th International Conference
on Automated Planning and Scheduling (ICAPS’15). AAAI
Press.
Bäckström, C.; Jonsson, P.; and Ståhlberg, S. 2013. Fast
detection of unsolvable planning instances using local con-
sistency. In Helmert, M., and Röger, G., eds., Proceed-
ings of the 6th Annual Symposium on Combinatorial Search
(SOCS’13), 29–37. AAAI Press.
Domshlak, C.; Hoffmann, J.; and Katz, M. 2015. Red-
black planning: A new systematic approach to partial delete
relaxation. Artificial Intelligence 221:73–114.
Gnad, D., and Hoffmann, J. 2015a. Beating LM-cut with
hmax (sometimes): Fork-decoupled state space search. In
Brafman, R.; Domshlak, C.; Haslum, P.; and Zilberstein,
S., eds., Proceedings of the 25th International Conference
on Automated Planning and Scheduling (ICAPS’15). AAAI
Press.
Gnad, D., and Hoffmann, J. 2015b. Red-black planning: A
new tractability analysis and heuristic function. In Lelis, L.,
and Stern, R., eds., Proceedings of the 8th Annual Sympo-
sium on Combinatorial Search (SOCS’15). AAAI Press.
Gnad, D.; Steinmetz, M.; Jany, M.; Hoffmann, J.; Serina, I.;
and Gerevini, A. 2015. Partial delete relaxation, unchained:
On intractable red-black planning and its applications. In
Baier, J., and Botea, A., eds., Proceedings of the 9th Annual
Symposium on Combinatorial Search (SOCS’16). AAAI
Press.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.

Hoffmann, J.; Kissmann, P.; and Torralba, Á. 2014. “Dis-
tance”? Who Cares? Tailoring merge-and-shrink heuris-
tics to detect unsolvability. In Schaub, T., ed., Proceedings
of the 21st European Conference on Artificial Intelligence
(ECAI’14). Prague, Czech Republic: IOS Press.
Katz, M., and Hoffmann, J. 2013. Red-black relaxed plan
heuristics reloaded. In Helmert, M., and Röger, G., eds.,
Proceedings of the 6th Annual Symposium on Combinatorial
Search (SOCS’13), 105–113. AAAI Press.
Katz, M.; Hoffmann, J.; and Domshlak, C. 2013a. Red-
black relaxed plan heuristics. In desJardins, M., and
Littman, M., eds., Proceedings of the 27th AAAI Confer-
ence on Artificial Intelligence (AAAI’13), 489–495. Belle-
vue, WA, USA: AAAI Press.

Katz, M.; Hoffmann, J.; and Domshlak, C. 2013b. Who
said we need to relax all variables? In Borrajo, D.; Fratini,
S.; Kambhampati, S.; and Oddi, A., eds., Proceedings of
the 23rd International Conference on Automated Planning
and Scheduling (ICAPS’13), 126–134. Rome, Italy: AAAI
Press.
Torralba, A., and Alcázar, V. 2013. Constrained sym-
bolic search: On mutexes, BDD minimization and more. In
Helmert, M., and Röger, G., eds., Proceedings of the 6th An-
nual Symposium on Combinatorial Search (SOCS’13), 175–
183. AAAI Press.

CLone: A Critical-Path Driven Clause Learner

Marcel Steinmetz and Jörg Hoffmann
Saarland University

Saarbrücken, Germany
{steinmetz,hoffmann}@cs.uni-saarland.de

Abstract
In this paper, we introduce a planner that, similar to CDCL
(conflict-driven clause learning) SAT solvers, learns from
making wrong decisions in a way guaranteeing to preclude
these mistakes in the future. The planner we describe, named
CLone, conducts a depth-first forward search in the state
space of the problem. To identify dead ends early on, and
thus to reduce search effort, we make use of the critical path
heuristic hC . hC is defined relative to a given set C of fact
conjunctions. During search, we identify unrecognized dead
ends, i. e., dead ends s with hC(s) < ∞, and we use them
to update C in order to recognize s, and possibly also dead
ends similar to s. As the evaluation of hC is getting compu-
tationally more expensive the more conjunctions are added
to C, we further maintain and continuously update a set of
clauses ∆ with the property that if s 6|= φ for some φ ∈ ∆
then hC(s) = ∞. Although these clauses are subsumed by
hC by definition, they have a tremendous impact in practice.
For a more detailed explanation of this approach, we refer the
reader to (Steinmetz and Hoffmann 2016).

Introduction
CLone determines the (un-)solvability of a problem by run-
ning a depth-first like search in the state space. When only
running search in the state space (i. e. without using ad-
ditional state reduction techniques), one has to construct
the entire state space to show the unsolvability of a prob-
lem. To reduce the number of states that actually have to
be touched by the search, and thus to avoid building the
whole state space, we rely on heuristic functions h, i. e.,
estimations of the distance from a given state to the goal.
Contrary to finding solutions to solvable problems, however,
we are not interested in the actual goal distance estimations
given by the heuristics: if a problem is unsolvable, then the
search has to explore all states s with h(s) < ∞ – where
h(s) = ∞ means that s is even unsolvable in the relax-
ation underlying h. This led to the definition of unsolvabil-
ity heuristics, heuristics that either return ∞ (“dead-end”)
or 0 (“don’t know”) (Bäckström et al. 2013; Hoffmann et al.
2014). Concrete unsolvability heuristics have been designed
based on state-space abstractions, specifically projections
(pattern databases (Edelkamp 2001)) and merge-and-shrink
abstractions (Helmert et al. 2014). The empirical results are
impressive, especially for merge-and-shrink which convinc-
ingly beats state-of-the-art BDD-based planning techniques

(Torralba and Alcázar 2013) on a suite of unsolvable bench-
mark tasks.

Critical-path heuristics lower-bound goal distance
through the relaxing assumption that, to achieve a conjunc-
tive subgoal G, it suffices to achieve the most costly atomic
conjunction contained in G. In the original critical-path
heuristics hm (Haslum and Geffner 2000), the atomic
conjunctions are all conjunctions of size ≤ m, where m
is a parameter. As part of recent works (Haslum 2009;
2012; Keyder et al. 2014), this was extended to arbitrary
sets C of atomic conjunctions. Following Hoffmann and
Fickert (2015), we denote the generalized heuristic with
hC . A well-known and simple result is that, for sufficiently
large m, hm delivers perfect goal distance estimates. As a
corollary, for appropriately chosen C, hC recognizes all
dead-ends. Our idea thus is to refine C during search, based
on the dead-ends encountered.

We start with a simple initialization of C, to the set of
singleton conjunctions. During search, components Ŝ of un-
recognized dead-ends, where hC(s) < ∞ for all s ∈ Ŝ, are
identified (become known) when all their descendants have
been explored. We refine hC on such components Ŝ, adding
new conjunctions intoC in a manner guaranteeing that, after
the refinement, hC(s) = ∞ for all s ∈ Ŝ. The refined hC
has the power to generalize to other dead-ends search may
encounter in the future, i. e., refining hC on Ŝ may lead to
recognizing also other dead-end states s′ 6∈ Ŝ. It is known
that computing critical-path heuristics over large sets C is
(polynomial-time yet) computationally expensive. Comput-
ing hC on all search states often results in prohibitive run-
time overhead. We tackle this with a form of clause learning.
For a dead-end state s where hC evaluates to∞, we extract
a clause φ that guarantees for all states s′ with s′ 6|= φ that
hC(s′) =∞. When testing whether a new state s′ is a dead-
end, we first evaluate the clauses φ, and invoke the compu-
tation of hC(s′) only in case s′ satisfies all clauses φ ∈ ∆.

The resulting algorithm approaches the elegance of clause
learning in SAT (e. g. (Marques-Silva and Sakallah 1999;
Moskewicz et al. 2001; Eén and Sörensson 2003)): When
a subtree is fully explored, the hC-refinement and clause
learning (1) learns to refute that subtree, (2) enables back-
jumping to the shallowest non-refuted ancestor, and (3) gen-
eralizes to other similar search branches in the future.

For full details on the techniques used in this planner, we
refer the reader to (Steinmetz and Hoffmann 2016).

Background
We consider planning tasks Π = 〈F ,A, I,G〉 in STRIPS
encoding. F gives a set of facts; A a set of actions; I ⊆ F
is the initial state; and G ⊆ F the goal. Each a ∈ A has
a precondition pre(a) ⊆ F , an add list add(a) ⊆ F , and
a delete list del(a) ⊆ F . Action costs are irrelevant with
respect to the solvability of planning tasks, so we assume
unit cost throughout. In action preconditions and the goal,
the fact set is interpreted as a conjunction; we will use the
same convention for the conjunctions in the set C, i. e., the
c ∈ C are fact sets c ⊆ F . A state s, in particular the initial
state I , is a set of facts, namely those true in s (the other facts
are assumed to be false). There is a transition from state s to
s[[a]] via action a if a is applicable to s, i. e., pre(a) ⊆ s,
and s[[a]] := (s\del(a))∪add(a). Goal states are all states
s where G ⊆ s. A dead-end is a state for which no path to a
goal state exists. Viewing the state space of Π, denoted ΘΠ,
as a directed graph over states, given a subset S ′ of states,
by ΘΠ|S′ we denote the subgraph induced by S ′. If there is
a path in ΘΠ|S′ from s to t, then we say that t is reachable
from s in ΘΠ|S′ .

A heuristic is a function hmapping states to natural num-
bers or∞. The family of critical-path heuristics, which un-
derly Graphplan (Blum and Furst 1997) and were formally
introduced by Haslum and Geffner (2000), estimate goal dis-
tance through the relaxation assuming that, from any goal
set of facts, it suffices to achieve the most costly subgoal
(sub-conjunction). The family is parameterized by the set of
atomic subgoals considered. Formally, for a fact set G and
action a, define the regression of G over a as R(G, a) :=
(G \ add(a)) ∪ pre(a) in case that add(a) ∩ G 6= ∅ and
del(a) ∩ G = ∅; otherwise, the regression is undefined and
we write R(G, a) = ⊥. By A[G] we denote the set of ac-
tions where R(G, a) 6= ⊥. Let C be any set of conjunc-
tions. The generalized critical-path heuristic (Hoffmann and
Fickert 2015) hC(s) is defined through hC(s) := hC(s,G)
where

hC(s,G) =

{0 G ⊆ s
1 + mina∈A[G] h

C(s,R(G, a))G ∈ C
maxG′⊆G,G′∈C h

C(s,G′) else
(1)

A well known property of critical path heuristics is that
they are admissible, i. e., that they always underestimate the
real goal distance. In other words, if hC(s) = ∞, then, as
desired, s is indeed a dead end, and s can be disregarded in
search without loosing completeness. Note that hC(s) =∞
occurs (only) due to empty minimization in the middle case
of Equation 1, i. e., if every possibility to achieve the global
goal G incurs at least one atomic subgoal not supported by
any action.

Similarly as for hm, hC can be computed in time poly-
nomial in |C| and the size of Π. It is known that, in prac-
tice, hm is reasonably fast to compute for m = 1, consumes
substantial runtime for m = 2, and is mostly infeasible for
m = 3. The behavior is similar when using arbitrary con-
junction sets C, in the sense that large C causes similar is-

Algorithm 1: CLone
1 Procedure DFS(Π)
2 Open := empty stack; push I to Open;
3 Closed := ∅;
4 while Open is not empty do
5 s← Open.top();
6 Open.pop();
7 if s ∈ Closed then
8 continue;

9 if hC(s) =∞ then
10 Backtrack(s);
11 continue;

12 if G ⊆ s then
13 return solvable;

14 Closed := Closed ∪ {s};
15 for all a ∈ A applicable to s do
16 push s[[a]] to Open;

17 CheckAndLearn(s);

18 return unsolvable;

19 Procedure CheckAndLearn(s)
20 R[s] := {t | t reachable from s in ΘΠ|Open∪Closed};
21 ifR[s] ⊆ Closed then
22 refine C s.t. hC(t) =∞ for every t ∈ R[s];
23 Backtrack(s);

24 Procedure Backtrack(s)
25 label s;
26 for every unlabeled parent t of s do
27 CheckAndLearn(t);

sues as hm for m > 1. As hinted, we will use a clause-
learning technique to alleviate this.

Search, Fail, Refine & Repeat
CLone runs search in the state space of the problem using hC
as a dead end identifier. During search, CLone keeps track
of expanded states to identify yet unrecognized dead ends.
Whenever an unrecognized dead end s is found, the set C
is extended by new atomic conjunction, guaranteeing that
hC(s) = ∞ after the refinement. In order to avoid as many
of the rather expensive computations of hC as possible,
CLone learns clauses as sufficient conditions to hC(s) =∞
each time a state is found where hC(s) has been evaluated
to∞. The clauses are used to filter states before hC is eval-
uated.

Identifying Failures in Search
Consider Algorithm 1. At the heart of CLone, it performs a
depth-first forward search in the state space of the problem,
while maintaining a closed list for duplicate checking. hC is
used as an efficient method to identify dead ends, eliminating
necessity of exploring any of the state’s successors.

To identify also dead ends not (yet) recognized by hC ,
CLone analyzes the search space after each state expansion.
The corresponding code, function CheckAndLearn in Al-
gorithm 1, performs a full lookahead search in the current
search space (ΘΠ|Open∪Closed), looking for states that have

not been expanded so far. Intuitively, a state s is a known
dead-end if the search has already proved that s is a dead
end, meaning that all states t reachable from s have al-
ready been explored and no such state t is a goal state, i. e.,
R[s] ⊆ Closed . It is easy to see that the concept of “known
dead-end” does capture exactly our intentions:
Proposition 1. Let s be a known dead-end during the exe-
cution of Algorithm 1. Then s is a dead-end.

Vice versa, if R[s] 6⊆ Closed , then some descendants of
s have not yet been explored, so the search does not know
whether or not s is a dead-end.

Once a known dead-end s is found, C is refined in a way
guaranteeing that hC(s) = ∞ afterwards. As we know al-
ready that s is a dead end, forcing that hC(s) =∞ seems to
be redundant. However, the reason of the refinement of C is
not actually to have hC recognize s as dead end, but rather
the hope that dead ends similar to s will be recognized as
well due to this very refinement.

To guarantee that all known dead-ends are found, and
thus to learn as much as possible, R[t] ⊆ Closed has to
be checked for each state t ∈ Closed after every state ex-
pansion. Naively checking this property for each state t ∈
Closed after every expansions is clearly infeasible. Instead,
CLone uses the observation that the propertyR[t] ⊆ Closed
can only change for ancestors t of the state s that was ex-
panded last. To find all these states, CLone checks this con-
dition on the parents of s, and recursively continues on those
parents satisfying the condition.

Although CLone could in principle also run any other
Closed -list based search algorithm, the key advantage of
DFS in our setting is that it focuses on completely explor-
ing subtrees, and hence it is able to identify unrecognized
dead-ends quickly.

Failure Analysis & hC Refinement
Once identified a known though unrecognized dead end s,
we have to find conjunctionsX that, when added toC, guar-
antee that hC∪X(s) = ∞. To find X , CLone makes use
of the specific context in which C is going to be refined.
Observe that whenever CheckAndLearn(s) calls the refine-
ment of C, it holds: (*) For every transition t → t′ where
t ∈ R[s], either t′ ∈ R[s] or uC(t′) = ∞. We will refer to
this by the recognized neighbors property. This is because
R[s] contains only closed states, so it contains all states t
reachable from s except for those where hC(t) =∞.

Algorithm 2 shows the overall refinement process. We
use Ŝ := R[s] to denote the component on which C is re-
fined, and T̂ := {t′ | t a−→ t′, t ∈ Ŝ, t′ 6∈ Ŝ} to denote
recognized neighbors. As shown at the top of Algorithm 2,
CLone computes X by recursively adding an unreachable
subgoal x ⊆ R(G, a) for each a ∈ A[G] to X , correspond-
ing to the middle case of Equation 1, and then continuing on
G = x until either hC(s,G) is already∞ for every s ∈ Ŝ, or
a[G] = ∅. Note that determining whether some x ⊆ R(G, a)
is unreachable from a state s is PSPACE-complete in gen-
eral. To still find such an x efficiently, CLone uses the rec-
ognized neighbors property:

Algorithm 2: Refining C for Ŝ with recognized neigh-
bors T̂ . C and X are global variables.

1 Procedure Refine(G)
2 x := ExtractX(G);
3 X := X ∪ {x};
4 for a ∈ A[x] where ex. s ∈ Ŝ s.t. hC(s,R(x, a)) <∞

do
5 if there is no x′ ∈ X s.t. x′ ⊆ R(x, a) then
6 Refine(R(x, a));

7 Procedure ExtractX(G)
8 x := ∅;

/* Lemma 2 (ii) */

9 while ∃t ∈ T̂ so that hC(t, x) <∞ do
10 c0 := ∅; n0 := 0;
11 for each c ∈ C where c ⊆ G do
12 n := |{t ∈ T̂ | hC(t, x) <∞, hC(t, c) =∞}|;
13 if n ≥ n0 or (n = n0 and |c \ x| < |c0 \ x|)

then
14 c0 := c; n0 := n;

15 x := x ∪ c0;

/* Lemma 2 (i) */

16 for every s ∈ Ŝ do
17 if x ⊆ s then
18 select p ∈ G \ s; x := x ∪ {p};

19 return x;

Lemma 2 (Steinmetz and Hoffmann 2016). If x ⊆ G satis-
fies

(i) for every s ∈ Ŝ, x 6⊆ s; and
(ii) for every t ∈ T̂ , there exists c ∈ C such that c ⊆ x and

hC(t, c) =∞;
then x is unreachable from every s ∈ Ŝ.

To ensure (ii) of Lemma 2 in the computation of x,
CLone’s procedure ExtractX(G) tries to greedily construct
a minimal conjunction that covers all recognized neighbors.
It does so by merging an atomic conjunction c0 ∈ C, c0 ⊆ G
into x that covers as many recognized neighbors as possible,
while being minimal in size, as long as the condition (ii) is
not satisfied. If the resulting x is not contained in any s ∈ Ŝ
then we are done, otherwise for each affected s we add a
fact p ∈ G \ s into x, to ensure Lemma 2 (i). Putting things
together, we get the desired result:
Theorem 2 (Steinmetz and Hoffmann 2016). Algorithm 2
is correct:

(i) The execution is well defined, i. e., it is always possible
to extract a conflict x as specified.

(ii) The algorithm terminates.
(iii) Upon termination, hC∪X(s) =∞ for every s ∈ Ŝ.

Clause Learning
As pointed out, the clauses we learn do not have the same
pruning power as hC . Yet they have a dramatic runtime ad-
vantage, which is key to applying learning and pruning liber-
ally. We always evaluate the clauses prior to evaluating hC ,

and we learn a new clause every time hC is evaluated and
returns∞.

Different from the clause learning approach presented
in our prior work (Steinmetz and Hoffmann 2016), CLone
computes the clauses directly from the structure underlying
hC . Say hC has been evaluated on s to∞. CLone constructs
a clause φ so that s′ 6|= φ implies hC(s′) = ∞ following
Equation 1. In detail, φ is set to a disjunction of atomic con-
junctions so that (1) for each atomic conjunction c taking
part in φ: hC(s, c) = ∞; (2) for each c ∈ φ and for each
a ∈ A[c], there must be some c′ ∈ φ with c′ ⊆ R(c, a) (cf.
middle case of Equation 1); and (3) there must be an atomic
conjunction c ∈ φ so that c ⊆ G (cf. last case of Equation
1). In this way, CLone ensures that φ is self contained, i. e.,
that for each atomic conjunction c ∈ φ, φ covers all possi-
ble ways of achieving c. In other words, if a state s′ does
not satisfy φ, i. e., c 6⊆ s′ for every c ∈ φ, then we obtain
hC(s′) =∞ as a direct consequence.

Implementation
CLone is implemented on top of Fast Downward (Helmert
2006), extended by the h2 preprocessor (Alcázar and Tor-
ralba 2015). For hC , following Hoffmann and Fickert
(2015), we use counters over pairs (c, a) where c ∈ C,
a ∈ A[c], and R(c, a) does not contain a fact mutex. The
depth-first search of CLone breaks ties (order of children)
randomly .

Given a problem in form of a PDDL domain and a PDDL
problem file, Fast Downward first compiles these files into
an FDR planning task. All methods (and in particular the
search), except of the computation and refinement of hC , op-
erate directly on this FDR encoding. Only the computation
and refinement of hC pretend to have a STRIPS encoding of
the problem by considering variable value pairs as facts, and
threating the actions accordingly.

CLone initializesC to the set of all unit conjunctions, i. e.,
C = {{p} | p ∈ F}. Additionally, if the causal graph of the
FDR task contains more than one maximal SCC, CLone adds
the conjunctions of facts to C corresponding to the variable
value assignments of all pairs of variables that are part of the
root SCC. The intuition behind this is that the root compo-
nent of a problem’s causal graph is usually a central part of
the problem structure, and having the pairs of the values of
the corresponding variables often helps the refinement algo-
rithm to find smaller sets X .

Acknowledgments. This work was partially supported by
the German Research Foundation (DFG), under grant HO
2169/5-1 “Critically Constrained Planning via Partial Delete
Relaxation”.

References
Vidal Alcázar and Álvaro Torralba. A reminder about the
importance of computing and exploiting invariants in plan-
ning. ICAPS’15.
Christer Bäckström, Peter Jonsson, and Simon Ståhlberg.
Fast detection of unsolvable planning instances using local
consistency. SOCS’13, 29–37.

Avrim L. Blum and Merrick L. Furst. Fast planning
through planning graph analysis. Artificial Intelligence,
90(1-2):279–298, 1997.
Stefan Edelkamp. Planning with pattern databases. ECP’01,
13–24.
Niklas Eén and Niklas Sörensson. An extensible sat-solver.
SAT’03, 502–518.
Patrik Haslum and Hector Geffner. Admissible heuristics
for optimal planning. AIPS’00, 140–149.
Patrik Haslum. hm(P) = h1(Pm): Alternative characteri-
sations of the generalisation from hmax to hm. ICAPS’09,
354–357.
Patrik Haslum. Incremental lower bounds for additive cost
planning problems. ICAPS’12, 74–82.
Malte Helmert, Patrik Haslum, Jörg Hoffmann, and Raz Nis-
sim. Merge & shrink abstraction: A method for generating
lower bounds in factored state spaces. Journal of the Asso-
ciation for Computing Machinery, 61(3), 2014.
Malte Helmert. The Fast Downward planning system. Jour-
nal of Artificial Intelligence Research, 26:191–246, 2006.
Jörg Hoffmann and Maximilian Fickert. Explicit conjunc-
tions w/o compilation: Computing hFF (πc) in polynomial
time. ICAPS’15.
Jörg Hoffmann, Peter Kissmann, and Álvaro Torralba. “Dis-
tance”? Who Cares? Tailoring merge-and-shrink heuristics
to detect unsolvability. ECAI’14.
Emil Keyder, Jörg Hoffmann, and Patrik Haslum. Improving
delete relaxation heuristics through explicitly represented
conjunctions. Journal of Artificial Intelligence Research,
50:487–533, 2014.
Joao Marques-Silva and Karem Sakallah. GRASP: A search
algorithm for propositional satisfiability. IEEE Transactions
on Computers, 48(5):506–521, May 1999.
M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Ma-
lik. Chaff: Engineering an efficient SAT solver. DAC-01.
Marcel Steinmetz and Jörg Hoffmann. Towards clause-
learning state space search: Learning to recognize dead-
ends. AAAI’16.
Álvaro Torralba and Vidal Alcázar. Constrained sym-
bolic search: On mutexes, BDD minimization and more.
SOCS’13, 175–183.

Fast Downward Aidos
Jendrik Seipp and Florian Pommerening and Silvan Sievers and Martin Wehrle

University of Basel
Basel, Switzerland

{jendrik.seipp,florian.pommerening,silvan.sievers,martin.wehrle}@unibas.ch

Chris Fawcett
University of British Columbia

Vancouver, Canada
fawcettc@cs.ubc.ca

Yusra Alkhazraji
University of Freiburg

Freiburg, Germany
alkhazry@informatik.uni-freiburg.de

This paper describes the three Fast Downward Aidos port-
folios we submitted to the Unsolvability International Plan-
ning Competition 2016. All three Aidos variants are im-
plemented in the Fast Downward planning system (Helmert
2006). We use a pool of techniques as a basis for our portfo-
lios, including various techniques already implemented Fast
Downward, as well as three newly developed techniques to
prove unsolvability.

We used automatic algorithm configuration to find a good
Fast Downward configuration for each of a set of test do-
mains and used the resulting data to select the components,
their order and their time slices for our three portfolios.

For Aidos 1 and 2 we made this selection manually, re-
sulting in two portfolios comprised mostly of the three new
techniques. Aidos 1 distributes the 30 minutes based on our
experiments, while Aidos 2 distributes the time uniformly.

Aidos 3 contains unmodified configurations from the tun-
ing process with time slices automatically optimized for the
number of solved instances per time. It is based both on the
new and existing Fast Downward components.

The remainder of this planner abstract is organized as fol-
lows. First, we describe the three newly developed tech-
niques. Second, we list the previously existing compo-
nents of Fast Downward that we have used for configura-
tion. Third, we describe the benchmarks used for training
and test sets. Fourth, we describe the algorithm configura-
tion process in more detail. Finally, we briefly describe the
resulting portfolios.

Dead-End Pattern Database
A dead-end pattern database (PDB) stores a set of partial
states that are reachable in some abstraction, and for which
no plan exists in the abstraction. Every state s encountered
during the search can be checked against the dead-end PDB:
if s is consistent with any of the stored partial states, then s
can be pruned.

Since we also submitted a stand-alone planner using only
a dead-end PDB to the IPC, we refer to its planner abstract
(Pommerening and Seipp 2016) for details on this tech-
nique.

Dead-end Potentials
Dead-end potentials can prove that there is no plan
for a state s by finding an invariant that must be

satisfied by all states reachable from s but that is
unsatisfied in every goal state. The invariants we con-
sider are based on potentials, i.e., numerical values
assigned to each state. If potentials exist such that
(1) no operator application decreases a state’s potential,

and
(2) the potential of s is higher than the potential of all

goal states,
then there cannot be a plan for s.

In order to describe the form of potentials used in our im-
plementation, we first introduce more terminology. A fea-
ture is a conjunction of facts. We say that feature F is true
in state s if all facts of F are true in s. We define a numerical
weight for each feature. The potential of a state s is defined
as the sum of all weights for the features that are true in s.

If the planning task is in transition normal form (Pom-
merening and Helmert 2015), the conditions (1) and (2) can
be expressed as linear constraints over the feature weights.
We can use an LP solver to check if there is a solution for
these constraints. A solution of the LP forms a certificate for
the unsolvability of s.

Dead-end potentials can show unsolvability using any set
of features. The default feature set we use in most configu-
rations contains all features of up to two facts.

We note that the dual of the resulting LP produces an op-
erator counting heuristic (Pommerening et al. 2014). In fact,
this is the implementation strategy we used for this method.

We use dead-end potentials to prune dead ends in every
encountered state. Since only the bounds of the LP differ
between states, the LP can be reused by adapting the bounds
instead of having to be recreated for every state.

Resource Detection
For a given planning task Π with operator cost function
cost, we check for depletable resource variables (shortly
called resource variables in the following). We call a vari-
able v a resource variable if the atomic projection Πv of Π
onto v yields, apart from self-loops, a directed acyclic graph
(DAG). Intuitively, if this is the case, the number of operator
applications that change the value of v is bounded. We use
this knowledge for pruning an optimal search in the projec-
tion of Π onto all variables except v, called Πv̄ .

Currently, our approach handles only a single resource
variable. This resource variable is computed as follows. For

Π’s variable set V , we check for each variable v in V if
the above DAG property and an additional quality criterion
hold for v. The additional quality criterion requires i) the
domain size of v to be ≥ 5, and ii) the number of operators
in Πv̄ to be at most 85% of the number of operators in Π.
If no such resource variable is found, we abort immediately
(and switch to the other configurations in our portfolios). If
there are several such resource variables, we choose the one
with the largest domain size among them. Overall, we either
end up with no resource variable found (abstaining from the
following steps), or with exactly one variable with the above
properties on acyclicity, domain size, and operator reduction
in the corresponding abstractions.

In case a resource variable v has been found, we exploit
this variable for detecting unsolvability as follows. Consider
any cost function cost′ that maps operators inducing self-
loops in Πv to 0. LetL be the cost of the most expensive path
in Πv using cost′ (L is finite because the state space of Πv

is a DAG except for edges where cost′ is 0). Every operator
sequence π = 〈o1, . . . , on〉 with cost′(π) > L cannot be
applicable in Π because its cost exceeds the highest possible
cost in the projection Πv . Thus every plan π of Π must have
cost′(π) ≤ L. The projection of these plans to V \ {v}must
be a plan in Πv̄ . We hence obtain a sufficient criterion for
checking unsolvability of Π: Perform an optimal search for
Πv̄ with an f -bound equal to L; if no plan is found in Πv̄

this way, then Π is unsolvable.
Any cost function cost′ which maps self-loops in Πv to 0

works for this technique, but some lead to more pruning in
Πv̄’s search space than others. A node is pruned in the search
for Πv̄ if its f -value exceeds L, so a good cost function max-
imizes the number of operator sequences with maximal cost
in Πv . We compute cost′ by solving a linear program. LetO
be the operator set in Π with corresponding abstract operator
set Ov̄ in Πv̄ . We maximize the weighted sum∑

ov̄∈Ov̄

cost′(ov̄) · |{o ∈ O | ov̄ is the projection of o}|,

using the constraints that the summed cost′ values are L on
every path in Πv from the source of the DAG (the initial
value of v) to an artificial sink connecting all sinks of the
DAG. In our implementation, we fix L to 1000. Every other
value of L would have correspondingly scaled solutions of
cost′ but since we round costs to integers, we have to set L
sufficiently high to avoid rounding too many different costs
to the same value.

Other Fast Downward Components
In addition to the three techniques described above, we used
the following Fast Downward components for detecting un-
solvability.

Search We implemented a simple breadth-first search that
we used for most configurations. Compared to Fast Down-
ward’s general-purpose eager best-first search, it has a con-
siderably smaller overhead. This search method is called
unsolvable search in the configurations listed in the
appendix.

Configurations using resource detection must find opti-
mal plans in the projection where the resource variable is
projected out of the task. For those configurations, we used
A∗ search.

Heuristics In addition to our new techniques, we made the
following heuristics available for configuration.

• Blind heuristic

• CEGAR (Seipp and Helmert 2013; 2014): additive and
non-additive variants

• hm (Haslum and Geffner 2000): naive implementation

• hmax (Bonet, Loerincs, and Geffner 1997; Bonet and
Geffner 1999)

• LM-cut (Helmert and Domshlak 2009)

• Merge-and-shrink (Helmert et al. 2014; Sievers, Wehrle,
and Helmert 2014)

• Operator counting heuristics (Pommerening et al. 2015).

• The canonical PDBs heuristic either combining PDBs
from systematically generated patterns (Pommerening,
Röger, and Helmert 2013) or PDBs from iPDB hill climb-
ing (Haslum et al. 2007), and the zero-one PDBs heuris-
tic combining PDBs from a genetic algorithm (Edelkamp
2006). Sievers, Ortlieb, and Helmert (2012) describe im-
plementation details.

• Potential heuristics (Pommerening et al. 2015) with dif-
ferent objective functions as described by Seipp, Pom-
merening, and Helmert (2015). We also added a variant
of the potential heuristic that maximizes the average po-
tential of all syntactic states (called unsolvable-all-states-
potential heuristic). This variant sets all operator costs to
zero, allowing to prune all states with a positive potential.

Pruning We used the following two pruning methods:

• Strong stubborn sets: the first variant instantiates strong
stubborn sets for classical planning in a straight-forward
way (Alkhazraji et al. 2012; Wehrle and Helmert 2014).
The second variant (Wehrle et al. 2013) provably domi-
nates the Expansion Core method (Chen and Yao 2009)
in terms of pruning power.
While the standard implementation of strong stubborn
sets in Fast Downward entirely precomputes the interfer-
ence relation, we enhanced the implementation by com-
puting the interference relation “on demand” during the
search, and by switching off pruning completely in case
the amount of pruned states falls below a given threshold.

• h2-mutexes (Alcázar and Torralba 2015): an operator
pruning method for Fast Downward’s preprocessor. We
use this method for all three portfolios.

Benchmarks
In this section we describe the benchmark domains we used
for evaluating our heuristics and for automatic algorithm
configuration.

We used the collection of unsolvable tasks from Hoff-
mann, Kissmann, and Torralba (2014) comprised of

the domains 3unsat, Bottleneck, Mystery, Pegsol, RCP-
NoMystery, RCP-Rovers, RCP-TPP and Tiles. Futhermore,
we used the unsolvable Maintenance (converted to STRIPS)
and Tetris instances from the IPC 2014 optimal track.

Finally, we created two new domains and modified some
existing IPC domains to contain unsolvable instances. The
following list describes these domains.

Cavediving (IPC 2014). We generated unsolvable in-
stances by limiting the maximal capacity the divers can
carry.

Childsnack (IPC 2014). We generated unsolvable in-
stances by setting the ratio of available ingredients to re-
quired servings to values less than 1.

NoMystery (IPC 2011). We generated unsolvable in-
stances by reducing the amounts of fuel available at each
location.

Parking (IPC 2011). We generated unsolvable instances
by setting the number of cars to 2l−1, where l is the number
of parking curb locations.

Sokoban (IPC 2008). We used the twelve methods de-
scribed by Zerr (2014) for generating unsolvable instances.

Spanner (IPC 2011). We generated unsolvable instances
by making the number of nuts exceed the number of span-
ners.

Pebbling (New). Consider a square n×n grid. We call the
three fields in the upper left corner (i.e., coordinates 〈0, 0〉,
〈0, 1〉 and 〈1, 0〉) the prison. The prison is initially filled
with pebbles, all other fields are empty. A pebble on position
〈x, y〉 can be moved if the fields 〈x + 1, y〉 and 〈x, y + 1〉
are empty. Moving the pebble “clones” it to the free fields,
i.e., the pebble is removed from 〈x, y〉 and new pebbles are
added to 〈x + 1, y〉 and 〈x, y + 1〉. The goal is to free all
pebbles from the prison, i.e., have no pebble on a field in the
prison. This problem is unsolvable for all values of n.

PegsolInvasion (New). This domain is related to the well-
known peg solitaire board game. Instead of peg solitaire’s
“cross” layout, PegsolInvasion tasks have a rectangular n×
m grid, where m = n + x > n. Initially, the n × n square
at the bottom of the grid is filled with pegs. The goal is to
move one peg to the middle of the top row using peg solitaire
movement rules. This problem is unsolvable for all values
of n ≥ 1 and x ≥ 5.

Algorithm Configuration
In the spirit of previous work (Vallati et al. 2011; Fawcett
et al. 2011; Seipp et al. 2012; 2015), we used algorithm
configuration to find configurations for unsolvable planning
tasks. Here, we employed SMAC v2.10.04, a state-of-the-art

model-based configuration tool (Hutter, Hoos, and Leyton-
Brown 2011).

Some of the heuristics listed above are not useful for prov-
ing unsolvability. On the other hand, all of the mentioned
heuristics are useful for our resource detection method, since
we try to solve the modified tasks. We therefore considered
two algorithm configuration scenarios for Fast Downward,
one tailored towards unsolvability detection, the other to-
wards resource detection.

Configuring for Unsolvability
Our configuration space for detecting unsolvability only in-
cludes one search algorithm, our new breadth-first search.
We include all new techniques, existing heuristics and prun-
ing methods described above, except for the following
heuristics:

• All potential heuristics other than the unsolvable-all-
states-potential heuristic. Since the other variants use
bounds on each weight, they always compute finite
heuristic values and will never prune any state.

• The canonical PDBs heuristic and the zero-one PDBs
heuristic. Both techniques can increase the heuristic
value, but will not lead to more pruning than taking the
maximum over the PDBs.

• LM-cut, because it can only detect states as unsolvable
that are also detected as unsolvable by hmax, which is
faster to compute.

• Additive variant of CEGAR.

Using several hand-crafted Fast Downward configura-
tions, we identified domains from our benchmark set con-
taining easy-non-trivial instances, i.e., instances that are not
trivially unsolvable and for which one or more of the config-
urations could prove unsolvability within 300 CPU seconds.
These domains were 3unsat, Cavediving, Mystery, NoMys-
tery, Parking, Pegsol, Tiles, RCP-NoMystery, RCP-Rovers,
RCP-TPP, and Sokoban. The three RCP domains were fur-
ther subdivided by instance difficulty into two sets each, al-
lowing algorithm configuration to find separate configura-
tions for easy and hard tasks. We used the easy-non-trivial
instances as the training sets for each problem domain, while
keeping any remaining instances from each domain for use
in a held-out test set not used during configuration.

We then performed 10 independent SMAC runs for each
of the 14 domain-specific training sets. Each SMAC run
was allocated 12 CPU hours of runtime, and each individual
run of Fast Downward was given 300 CPU seconds of run-
time and 8 GB of memory. The starting configuration was a
combination of the dead-end pattern database and operator
counting heuristics. The 10 best configurations selected by
SMAC for each considered domain were evaluated on the
corresponding test set. We selected the configuration with
the best penalized average runtime (PAR-10) as the incum-
bent configuration for that domain.

We then extended the training set for each domain by in-
cluding any instances for which unsolvability was proven
in under 300 CPU seconds by the incumbent configuration

for that domain. Then we performed an additional 10 in-
dependent runs of SMAC on the new training sets for each
domain, using the incumbent configuration for that domain
as the starting configuration. We again evaluated the 10 best
configurations for each domain on the corresponding test set,
and selected the configuration with the highest PAR-10 score
as the representative for this domain.

Configuring for Resource Detection
Our configuration space for resource detection allows only
A∗ search, but includes all other components described
above (new techniques, all listed heuristics and pruning
methods).

We chose the easy-non-trivial instances from the three
RCP domains as our benchmark set. Similar to the proce-
dure above we subdivided the tasks from the three domains
into three sets by difficulty, yielding 9 benchmark sets in to-
tal.

We employed the same procedure as above for finding
representative configurations from the resource detection
configuration space for these 9 sets. In this scenario we used
LM-cut as the starting configuration.

Portfolios
Using the representative configurations from the two config-
uration scenarios described above, we obtained a total of 23
separate Fast Downward configurations. We evaluated the
performance of each on our entire 928-instance benchmark
set with a 1800 CPU second runtime cutoff. We used the
resulting data for constructing Aidos 1 and 2 manually, and
for computing Aidos 3 automatically.

Manual portfolios: Aidos 1 and 2
Analyzing the results, we distilled three configurations that
together solve all tasks solved by any of the 23 representative
configurations. The three configurations use h2-mutexes
during preprocessing and stubborn sets to prune applica-
ble operators during search. In particular, they use the
stubborn sets variant that provably dominates EC (called
stubborn sets ec in the appendix). We adjusted the
minimum pruning threshold individually for the three tech-
niques. Techniques that can be evaluated fast on a given
state got a higher minimum pruning threshold. The three
configurations differ in the following aspects:

C1 Breadth-first search using a dead-end pattern database.

C2 Breadth-first search using dead-end potentials with fea-
tures of up to two facts.

C3 Resource detection using an A∗ search. The search uses
the CEGAR heuristic and operator counting with LM-cut
and state equation constraints.

Adding other heuristics did not increase the number of
solved tasks on our benchmark set. The three configurations
did not dominate each other, so it made sense to include all
of them in our portfolio. The only question was how to order
them and how to assign the time slices.

Both C1 and C2 prove many of our benchmark tasks un-
solvable in the initial state. On such instances the config-
urations usually take less than a second. Since the unsolv-
ability IPC uses time scores to break ties we start with two
short runs of C1 and C2. This avoids spending a lot of time
using one configuration, when another solves the task very
quickly.

Next, we run the resource detection method (C3). It will
be inactive on tasks where no resources are found and there-
fore not consume any time. Experiments showed that the
dead-end potentials use much less memory than the dead-
end PDB. To avoid a portfolio that runs out of memory while
executing the last component and therefore does not use the
full amount of time, we put the dead-end potentials (C2) last.

Results on our benchmarks showed that C3 did not solve
any additional tasks after 420 seconds. Similarly, C2 did not
solve any additional tasks after 100 seconds. Since C1 tends
to solve more tasks if given more time, we limited the times
for the other two configurations to 420 and 100 seconds and
alotted the remaining time (1275 seconds) to C1.

Aidos 2 is almost identical to Aidos 1, the only difference
being that it equally distributes the time among the three
main portfolio components.

Automatic portfolio: Aidos 3

In order to automatically select configurations and assign
both order and allocated runtime for Aidos 3, we used
the greedy schedule construction technique of Streeter and
Smith (2008). Briefly, given a set of configurations and cor-
responding runtimes for each on a benchmark set, this tech-
nique iteratively adds the configuration which maximizes n

t ,
where n is the number of additional instances solved with
a runtime cutoff of t. This can be efficiently solved for a
given benchmark set, as the runtime required for each con-
figuration on each instance is known and thus a finite set of
possible t need to be considered. Usually, this results in a
schedule beginning with many configurations and short run-
time cutoffs in order to quickly capture as much coverage
as possible. In order to avoid schedule components with ex-
tremely short runtime cutoffs, we set a minimum of 1 CPU
second for each component.

Using the performance of the 23 configurations obtained
from our two configuration scenarios configurations evalu-
ated on our entire benchmark set (i.e., all domains without
distinction of training or test set), this process resulted in the
Aidos 3 portfolio with 11 schedule components and runtime
cutoffs ranging from 2 to 1549 CPU seconds. All configura-
tions use h2-mutexes during preprocessing.

Acknowledgments
We would like to thank all Fast Downward contributors. We
are especially grateful to Malte Helmert, not only for his
work on Fast Downward, but also for many fruitful discus-
sions about the unsolvability IPC. Special thanks also go
to Álvaro Torralba and Vidal Alcázar for their h2-mutexes
code.

References
Alcázar, V., and Torralba, Á. 2015. A reminder about the
importance of computing and exploiting invariants in plan-
ning. In Brafman, R.; Domshlak, C.; Haslum, P.; and Zilber-
stein, S., eds., Proceedings of the Twenty-Fifth International
Conference on Automated Planning and Scheduling (ICAPS
2015), 2–6. AAAI Press.
Alkhazraji, Y.; Wehrle, M.; Mattmüller, R.; and Helmert,
M. 2012. A stubborn set algorithm for optimal planning. In
De Raedt, L.; Bessiere, C.; Dubois, D.; Doherty, P.; Fras-
coni, P.; Heintz, F.; and Lucas, P., eds., Proceedings of the
20th European Conference on Artificial Intelligence (ECAI
2012), 891–892. IOS Press.
Bonet, B., and Geffner, H. 1999. Planning as heuristic
search: New results. In Biundo, S., and Fox, M., eds., Re-
cent Advances in AI Planning. 5th European Conference on
Planning (ECP 1999), volume 1809 of Lecture Notes in Ar-
tificial Intelligence, 360–372. Heidelberg: Springer-Verlag.
Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A robust
and fast action selection mechanism for planning. In Pro-
ceedings of the Fourteenth National Conference on Artificial
Intelligence (AAAI 1997), 714–719. AAAI Press.
Chen, Y., and Yao, G. 2009. Completeness and optimal-
ity preserving reduction for planning. In Boutilier, C., ed.,
Proceedings of the 21st International Joint Conference on
Artificial Intelligence (IJCAI 2009), 1659–1664.
Edelkamp, S. 2006. Automated creation of pattern database
search heuristics. In Proceedings of the 4th Workshop on
Model Checking and Artificial Intelligence (MoChArt 2006),
35–50.
Fawcett, C.; Helmert, M.; Hoos, H.; Karpas, E.; Röger, G.;
and Seipp, J. 2011. FD-Autotune: Domain-specific config-
uration using Fast Downward. In ICAPS 2011 Workshop on
Planning and Learning, 13–17.
Haslum, P., and Geffner, H. 2000. Admissible heuristics
for optimal planning. In Chien, S.; Kambhampati, S.; and
Knoblock, C. A., eds., Proceedings of the Fifth International
Conference on Artificial Intelligence Planning and Schedul-
ing (AIPS 2000), 140–149. AAAI Press.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In Proceed-
ings of the Twenty-Second AAAI Conference on Artificial In-
telligence (AAAI 2007), 1007–1012. AAAI Press.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I., eds.,
Proceedings of the Nineteenth International Conference on
Automated Planning and Scheduling (ICAPS 2009), 162–
169. AAAI Press.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge-and-shrink abstraction: A method for gener-
ating lower bounds in factored state spaces. Journal of the
ACM 61(3):16:1–63.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.

Hoffmann, J.; Kissmann, P.; and Torralba, Á. 2014. “Dis-
tance”? Who cares? Tailoring merge-and-shrink heuris-
tics to detect unsolvability. In Schaub, T.; Friedrich, G.;
and O’Sullivan, B., eds., Proceedings of the 21st European
Conference on Artificial Intelligence (ECAI 2014), 441–446.
IOS Press.
Hutter, F.; Hoos, H.; and Leyton-Brown, K. 2011. Sequen-
tial model-based optimization for general algorithm con-
figuration. In Coello, C. A. C., ed., Proceedings of the
Fifth Conference on Learning and Intelligent OptimizatioN
(LION 2011), 507–523. Springer.
Pommerening, F., and Helmert, M. 2015. A normal form
for classical planning tasks. In Brafman, R.; Domshlak,
C.; Haslum, P.; and Zilberstein, S., eds., Proceedings of the
Twenty-Fifth International Conference on Automated Plan-
ning and Scheduling (ICAPS 2015), 188–192. AAAI Press.
Pommerening, F., and Seipp, J. 2016. Fast downward dead-
end pattern database. In Unsolvability International Plan-
ning Competition: planner abstracts.
Pommerening, F.; Röger, G.; Helmert, M.; and Bonet, B.
2014. LP-based heuristics for cost-optimal planning. In Pro-
ceedings of the Twenty-Fourth International Conference on
Automated Planning and Scheduling (ICAPS 2014), 226–
234. AAAI Press.
Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J.
2015. From non-negative to general operator cost partition-
ing. In Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence (AAAI 2015), 3335–3341. AAAI
Press.
Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting
the most out of pattern databases for classical planning. In
Rossi, F., ed., Proceedings of the 23rd International Joint
Conference on Artificial Intelligence (IJCAI 2013), 2357–
2364.
Seipp, J., and Helmert, M. 2013. Counterexample-guided
Cartesian abstraction refinement. In Borrajo, D.; Kambham-
pati, S.; Oddi, A.; and Fratini, S., eds., Proceedings of the
Twenty-Third International Conference on Automated Plan-
ning and Scheduling (ICAPS 2013), 347–351. AAAI Press.
Seipp, J., and Helmert, M. 2014. Diverse and additive Carte-
sian abstraction heuristics. In Proceedings of the Twenty-
Fourth International Conference on Automated Planning
and Scheduling (ICAPS 2014), 289–297. AAAI Press.
Seipp, J.; Braun, M.; Garimort, J.; and Helmert, M. 2012.
Learning portfolios of automatically tuned planners. In Mc-
Cluskey, L.; Williams, B.; Silva, J. R.; and Bonet, B., eds.,
Proceedings of the Twenty-Second International Conference
on Automated Planning and Scheduling (ICAPS 2012), 368–
372. AAAI Press.
Seipp, J.; Sievers, S.; Helmert, M.; and Hutter, F. 2015. Au-
tomatic configuration of sequential planning portfolios. In
Proceedings of the Twenty-Ninth AAAI Conference on Arti-
ficial Intelligence (AAAI 2015), 3364–3370. AAAI Press.
Seipp, J.; Pommerening, F.; and Helmert, M. 2015. New op-
timization functions for potential heuristics. In Brafman, R.;
Domshlak, C.; Haslum, P.; and Zilberstein, S., eds., Pro-

ceedings of the Twenty-Fifth International Conference on
Automated Planning and Scheduling (ICAPS 2015), 193–
201. AAAI Press.
Sievers, S.; Ortlieb, M.; and Helmert, M. 2012. Efficient
implementation of pattern database heuristics for classical
planning. In Borrajo, D.; Felner, A.; Korf, R.; Likhachev,
M.; Linares López, C.; Ruml, W.; and Sturtevant, N., eds.,
Proceedings of the Fifth Annual Symposium on Combinato-
rial Search (SoCS 2012), 105–111. AAAI Press.
Sievers, S.; Wehrle, M.; and Helmert, M. 2014. Gener-
alized label reduction for merge-and-shrink heuristics. In
Proceedings of the Twenty-Eighth AAAI Conference on Ar-
tificial Intelligence (AAAI 2014), 2358–2366. AAAI Press.
Streeter, M. J., and Smith, S. F. 2008. New techniques for
algorithm portfolio design. In Proceedings of the 24th Con-
ference in Uncertainty in Artificial Intelligence (UAI 2008),
519–527.
Vallati, M.; Fawcett, C.; Gerevini, A.; Holger, H.; and Saetti,
A. 2011. ParLPG: Generating domain-specific planners
through automatic parameter configuration in LPG. In IPC
2011 planner abstracts, Planning and Learning Part.
Wehrle, M., and Helmert, M. 2014. Efficient stubborn sets:
Generalized algorithms and selection strategies. In Proceed-
ings of the Twenty-Fourth International Conference on Au-
tomated Planning and Scheduling (ICAPS 2014), 323–331.
AAAI Press.
Wehrle, M.; Helmert, M.; Alkhazraji, Y.; and Mattmüller,
R. 2013. The relative pruning power of strong stubborn
sets and expansion core. In Borrajo, D.; Kambhampati, S.;
Oddi, A.; and Fratini, S., eds., Proceedings of the Twenty-
Third International Conference on Automated Planning and
Scheduling (ICAPS 2013), 251–259. AAAI Press.
Zerr, D. 2014. Generating and evaluating unsolvable strips
planning instances for classical planning. Bachelor’s thesis,
University of Basel.

Appendix – Fast Downward Aidos Portfolios
We list the configurations forming our three portfolios. Our portfolio components have the form of pairs (time slice, con-
figuration), with the first entry reflecting the time slice allowed for the configuration, which is in turn shown below the time
slice.

Aidos 1
1,
--heuristic h_seq=operatorcounting([state_equation_constraints(),

feature_constraints(max_size=2)], cost_type=zero)
--search unsolvable_search([h_seq], pruning=stubborn_sets_ec(

min_pruning_ratio=0.20))

4,
--search unsolvable_search([deadpdbs(max_time=1)], pruning=stubborn_sets_ec(

min_pruning_ratio=0.80))

420,
--heuristic h_seq=operatorcounting([state_equation_constraints(),

lmcut_constraints()])
--heuristic h_cegar=cegar(subtasks=[original()], pick=max_hadd, max_time=relative

time 75, f_bound=compute)
--search astar(f_bound=compute, eval=max([h_cegar, h_seq]),

pruning=stubborn_sets_ec(min_pruning_ratio=0.50))

1275,
--search unsolvable_search([deadpdbs(max_time=relative time 50)],

pruning=stubborn_sets_ec(min_pruning_ratio=0.80))

100,
--heuristic h_seq=operatorcounting([state_equation_constraints(),

feature_constraints(max_size=2)], cost_type=zero)
--search unsolvable_search([h_seq], pruning=stubborn_sets_ec(

min_pruning_ratio=0.20))

Aidos 2
1,
--heuristic h_seq=operatorcounting([state_equation_constraints(),

feature_constraints(max_size=2)], cost_type=zero)
--search unsolvable_search([h_seq], pruning=stubborn_sets_ec(

min_pruning_ratio=0.20))

4,
--search unsolvable_search([deadpdbs(max_time=1)], pruning=stubborn_sets_ec(

min_pruning_ratio=0.80))

598,
--heuristic h_seq=operatorcounting([state_equation_constraints(),

lmcut_constraints()])
--heuristic h_cegar=cegar(subtasks=[original()], pick=max_hadd, max_time=relative

time 75, f_bound=compute)
--search astar(f_bound=compute, eval=max([h_cegar, h_seq]),

pruning=stubborn_sets_ec(min_pruning_ratio=0.50))

598,
--search unsolvable_search([deadpdbs(max_time=relative time 50)],

pruning=stubborn_sets_ec(min_pruning_ratio=0.80))

599,

--heuristic h_seq=operatorcounting([state_equation_constraints(),
feature_constraints(max_size=2)], cost_type=zero)

--search unsolvable_search([h_seq], pruning=stubborn_sets_ec(
min_pruning_ratio=0.20))

Aidos 3
8,
--heuristic h_blind=blind(cache_estimates=false, cost_type=one)
--heuristic h_cegar=cegar(subtasks=[original(copies=1)], max_states=10,

use_general_costs=true, cost_type=one, max_time=relative time 50,
pick=min_unwanted, cache_estimates=false)

--heuristic h_deadpdbs=deadpdbs(patterns=combo(max_states=1), cost_type=one,
max_dead_ends=290355, max_time=relative time 99, cache_estimates=false)

--heuristic h_deadpdbs_simple=deadpdbs_simple(patterns=combo(max_states=1),
cost_type=one, cache_estimates=false)

--heuristic h_hm=hm(cache_estimates=false, cost_type=one, m=1)
--heuristic h_hmax=hmax(cache_estimates=false, cost_type=one)
--heuristic h_operatorcounting=operatorcounting(cache_estimates=false,

constraint_generators=[feature_constraints(max_size=3), lmcut_constraints(),
pho_constraints(patterns=combo(max_states=1)), state_equation_constraints()],
cost_type=one)

--heuristic h_unsolvable_all_states_potential=unsolvable_all_states_potential(
cache_estimates=false, cost_type=one)

--search unsolvable_search(heuristics=[h_blind, h_cegar, h_deadpdbs,
h_deadpdbs_simple, h_hm, h_hmax, h_operatorcounting,
h_unsolvable_all_states_potential], cost_type=one, pruning=stubborn_sets_ec(
min_pruning_ratio=0.9887183754249436))

6,
--heuristic h_deadpdbs=deadpdbs(patterns=genetic(disjoint=false,

mutation_probability=0.2794745683909153, pdb_max_size=1, num_collections=40,
num_episodes=2), cost_type=normal, max_dead_ends=36389913, max_time=relative
time 52, cache_estimates=false)

--heuristic h_deadpdbs_simple=deadpdbs_simple(patterns=genetic(disjoint=false,
mutation_probability=0.2794745683909153, pdb_max_size=1, num_collections=40,
num_episodes=2), cost_type=normal, cache_estimates=false)

--heuristic h_lmcut=lmcut(cache_estimates=true, cost_type=normal)
--heuristic h_operatorcounting=operatorcounting(cache_estimates=false,

constraint_generators=[feature_constraints(max_size=2), lmcut_constraints(),
pho_constraints(patterns=genetic(disjoint=false,
mutation_probability=0.2794745683909153, pdb_max_size=1, num_collections=40,
num_episodes=2)), state_equation_constraints()], cost_type=normal)

--heuristic h_zopdbs=zopdbs(patterns=genetic(disjoint=false,
mutation_probability=0.2794745683909153, pdb_max_size=1, num_collections=40,
num_episodes=2), cost_type=normal, cache_estimates=true)

--search astar(f_bound=compute, mpd=false, pruning=stubborn_sets_ec(
min_pruning_ratio=0.2444996579070121), eval=max([h_deadpdbs,
h_deadpdbs_simple, h_lmcut, h_operatorcounting, h_zopdbs]))

2,
--heuristic h_deadpdbs_simple=deadpdbs_simple(patterns=systematic(

only_interesting_patterns=true, pattern_max_size=3), cost_type=one,
cache_estimates=false)

--search unsolvable_search(heuristics=[h_deadpdbs_simple], cost_type=one,
pruning=null())

2,
--heuristic h_deadpdbs_simple=deadpdbs_simple(patterns=genetic(disjoint=true,

mutation_probability=0.32087500872172836, num_collections=30, num_episodes=7,

pdb_max_size=1908896), cost_type=one, cache_estimates=false)
--heuristic h_hm=hm(cache_estimates=false, cost_type=one, m=3)
--heuristic h_pdb=pdb(pattern=greedy(max_states=18052), cost_type=one,

cache_estimates=false)
--search unsolvable_search(heuristics=[h_deadpdbs_simple, h_hm, h_pdb],

cost_type=one, pruning=null())

2,
--heuristic h_blind=blind(cache_estimates=false, cost_type=one)
--heuristic h_deadpdbs=deadpdbs(cache_estimates=false, cost_type=one,

max_dead_ends=4, max_time=relative time 84, patterns=systematic(
only_interesting_patterns=false, pattern_max_size=15))

--heuristic h_deadpdbs_simple=deadpdbs_simple(patterns=systematic(
only_interesting_patterns=false, pattern_max_size=15), cost_type=one,
cache_estimates=false)

--heuristic h_merge_and_shrink=merge_and_shrink(cache_estimates=false,
label_reduction=exact(before_shrinking=true, system_order=random,
method=all_transition_systems, before_merging=false), cost_type=one,
shrink_strategy=shrink_bisimulation(threshold=115,
max_states_before_merge=56521, max_states=228893, greedy=true,
at_limit=use_up), merge_strategy=merge_dfp(atomic_before_product=false,
atomic_ts_order=regular, product_ts_order=random, randomized_order=true))

--search unsolvable_search(heuristics=[h_blind, h_deadpdbs, h_deadpdbs_simple,
h_merge_and_shrink], cost_type=one, pruning=null())

4,
--heuristic h_cegar=cegar(subtasks=[original(copies=1)], max_states=114,

use_general_costs=false, cost_type=normal, max_time=relative time 1,
pick=max_hadd, cache_estimates=false)

--heuristic h_cpdbs=cpdbs(patterns=genetic(disjoint=true,
mutation_probability=0.7174375735405052, num_collections=4, num_episodes=170,
pdb_max_size=1), cost_type=normal, dominance_pruning=true,
cache_estimates=false)

--heuristic h_deadpdbs=deadpdbs(cache_estimates=true, cost_type=normal,
max_dead_ends=12006, max_time=relative time 21, patterns=genetic(
disjoint=true, mutation_probability=0.7174375735405052, num_collections=4,
num_episodes=170, pdb_max_size=1))

--heuristic h_deadpdbs_simple=deadpdbs_simple(cache_estimates=false,
cost_type=normal, patterns=genetic(disjoint=true,
mutation_probability=0.7174375735405052, num_collections=4, num_episodes=170,
pdb_max_size=1))

--heuristic h_lmcut=lmcut(cache_estimates=true, cost_type=normal)
--heuristic h_operatorcounting=operatorcounting(cache_estimates=false,

cost_type=normal, constraint_generators=[feature_constraints(max_size=2),
lmcut_constraints(), pho_constraints(patterns=genetic(disjoint=true,
mutation_probability=0.7174375735405052, num_collections=4, num_episodes=170,
pdb_max_size=1)), state_equation_constraints()])

--heuristic h_pdb=pdb(pattern=greedy(max_states=250), cost_type=normal,
cache_estimates=false)

--search astar(f_bound=compute, mpd=true, pruning=null(), eval=max([h_cegar,
h_cpdbs, h_deadpdbs, h_deadpdbs_simple, h_lmcut, h_operatorcounting,
h_pdb]))

7,
--heuristic h_blind=blind(cache_estimates=false, cost_type=one)
--heuristic h_cegar=cegar(subtasks=[original(copies=1)], max_states=5151,

use_general_costs=false, cost_type=one, max_time=relative time 44,
pick=max_hadd, cache_estimates=false)

--heuristic h_hmax=hmax(cache_estimates=false, cost_type=one)

--heuristic h_merge_and_shrink=merge_and_shrink(cache_estimates=false,
label_reduction=exact(before_shrinking=true, system_order=random,
method=all_transition_systems_with_fixpoint, before_merging=false),
cost_type=one, shrink_strategy=shrink_bisimulation(threshold=1,
max_states_before_merge=12088, max_states=100000, greedy=false,
at_limit=return), merge_strategy=merge_linear(variable_order=cg_goal_random))

--heuristic h_operatorcounting=operatorcounting(cache_estimates=false,
constraint_generators=[feature_constraints(max_size=2), lmcut_constraints(),
state_equation_constraints()], cost_type=one)

--heuristic h_unsolvable_all_states_potential=unsolvable_all_states_potential(
cache_estimates=false, cost_type=one)

--search unsolvable_search(heuristics=[h_blind, h_cegar, h_hmax,
h_merge_and_shrink, h_operatorcounting, h_unsolvable_all_states_potential],
cost_type=one, pruning=null())

37,
--heuristic h_hmax=hmax(cache_estimates=false, cost_type=one)
--heuristic h_operatorcounting=operatorcounting(cache_estimates=false,

constraint_generators=[feature_constraints(max_size=10),
state_equation_constraints()], cost_type=zero)

--search unsolvable_search(heuristics=[h_hmax, h_operatorcounting],
cost_type=one, pruning=stubborn_sets_ec(min_pruning_ratio=0.4567602354825518))

33,
--heuristic h_all_states_potential=all_states_potential(max_potential=1e8,

cache_estimates=true, cost_type=normal)
--heuristic h_blind=blind(cache_estimates=false, cost_type=normal)
--heuristic h_cegar=cegar(subtasks=[goals(order=hadd_down), landmarks(

order=original, combine_facts=true), original(copies=1)], max_states=601,
use_general_costs=false, cost_type=normal, max_time=relative time 88,
pick=min_unwanted, cache_estimates=true)

--heuristic h_deadpdbs_simple=deadpdbs_simple(cache_estimates=true,
cost_type=normal, patterns=hillclimbing(min_improvement=2,
pdb_max_size=7349527, collection_max_size=233, max_time=relative time 32,
num_samples=28))

--heuristic h_initial_state_potential=initial_state_potential(max_potential=1e8,
cache_estimates=false, cost_type=normal)

--heuristic h_operatorcounting=operatorcounting(cache_estimates=false,
cost_type=normal, constraint_generators=[feature_constraints(max_size=10),
lmcut_constraints(), pho_constraints(patterns=hillclimbing(min_improvement=2,
pdb_max_size=7349527, collection_max_size=233, max_time=relative time 32,
num_samples=28)), state_equation_constraints()])

--heuristic h_pdb=pdb(pattern=greedy(max_states=6), cost_type=normal,
cache_estimates=true)

--heuristic h_zopdbs=zopdbs(patterns=hillclimbing(min_improvement=2,
pdb_max_size=7349527, collection_max_size=233, max_time=relative time 32,
num_samples=28), cost_type=normal, cache_estimates=false)

--search astar(f_bound=compute, mpd=true, pruning=stubborn_sets_ec(
min_pruning_ratio=0.0927145675045078), eval=max([h_all_states_potential,
h_blind, h_cegar, h_deadpdbs_simple, h_initial_state_potential,
h_operatorcounting, h_pdb, h_zopdbs]))

150,
--heuristic h_deadpdbs=deadpdbs(cache_estimates=false, cost_type=one,

max_dead_ends=6, max_time=relative time 75, patterns=systematic(
only_interesting_patterns=true, pattern_max_size=1))

--search unsolvable_search(heuristics=[h_deadpdbs], cost_type=one,
pruning=stubborn_sets_ec(min_pruning_ratio=0.3918701752094733))

1549,
--heuristic h_deadpdbs=deadpdbs(cache_estimates=false, cost_type=one,

max_dead_ends=63156737, max_time=relative time 4, patterns=ordered_systematic(
pattern_max_size=869))

--heuristic h_merge_and_shrink=merge_and_shrink(cache_estimates=false,
label_reduction=exact(before_shrinking=true, system_order=random,
method=all_transition_systems_with_fixpoint, before_merging=false),
cost_type=one, shrink_strategy=shrink_bisimulation(threshold=23,
max_states_before_merge=29143, max_states=995640, greedy=false,
at_limit=return), merge_strategy=merge_dfp(atomic_before_product=false,
atomic_ts_order=regular, product_ts_order=new_to_old, randomized_order=false))

--search unsolvable_search(heuristics=[h_deadpdbs, h_merge_and_shrink],
cost_type=one, pruning=null())

