Unsolvability IPC Track

Christian Muise 1 Nir Lipovetzky 2

1Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology, USA
cjmuise@mit.edu

2Department of Computing and Information Systems,
University of Melbourne, Australia
nir.lipovetzky@unimelb.edu.au
Before we begin...

Running an IPC is hard (now we know!)

Unsolvability is (thankfully still) hard

Kudos to those who made it easier:

Florian Pommerening & Jendrik Seipp (& the Basel cluster admins) for lab and server support / consultation

Malte Helmert for involved FD diagnosis

ICAPS for sponsoring the awards

All who submitted planners and domains (to be mentioned below) – many who put up with very long email threads!

Muise and Lipovetzky: Unsolvability IPC Track
Before we begin...

- Running an IPC is hard (*now we know!*)

Muise and Lipovetzky: Unsolvability IPC Track
Before we begin...

- Running an IPC is hard (*now we know!*)
- Unsolvability is (thankfully still) hard
Before we begin...

- Running an IPC is hard (*now we know!*)

- Unsolvability is (thankfully still) hard

- Kudos to those who made it easier:
 - Florian Pommerening & Jendrik Seipp (& the Basel cluster admins) for lab and server support / consultation
 - Malte Helmert for involved FD diagnosis
 - ICAPS for sponsoring the awards
 - All who submitted planners and domains (to be mentioned below) – many who put up with very long email threads!
Motivation

Satisficing is too easy. To promote techniques that are dedicated at detecting if a planning problem is unsolvable.

Applications

- System verification / diagnosis
- Planning with avoidable deadends
- Identifying human error in encodings
- Components in cellular automata proofs
Scoring

- Primary focus was coverage on unsolvable instances
- Solver disqualified on a domain for an incorrect result

Didn’t happen once!
Scoring
- Primary focus was coverage on unsolvable instances
- Solver disqualified on a domain for an incorrect result

Didn’t happen once!

Ideal Benchmark Properties
1. Mix of solvable and unsolvable instances
2. No syntactic distinction between them
3. At least some solvable problems are hard
Scoring
- Primary focus was coverage on unsolvable instances
- Solver disqualified on a domain for an incorrect result

Didn’t happen once!

Ideal Benchmark Properties
1. Mix of solvable and unsolvable instances
2. No syntactic distinction between them
3. At least some solvable problems are hard

Benchmarks
Sourced from deadend states of classical problems, width-based classical encodings, oversubscribed problems, new domains, etc.
Submissions

<table>
<thead>
<tr>
<th>Domains (15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 3 from existing set</td>
</tr>
<tr>
<td>- 12 newly submitted (or modified) domains</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Planners (11+1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 14 teams expressed interest</td>
</tr>
<tr>
<td>- 11 teams submitted</td>
</tr>
<tr>
<td>- 4 labs represented</td>
</tr>
</tbody>
</table>
Reused Unsolvable Domains

- **bottleneck**: Move around a grid; never revisit a spot
- **pegsol**: Classic game – hop a peg, remove the hopped
- **sliding-tiles**: Classic game – slide tiles to open space.
 Reversing two tiles causes the problem to be unsolvable
Thanks
Marcel Steinmetz, Hootan Nakhost, Jörg Hoffmann, Martin Mueller

Idea
Constrains the problem via a set of tunable parameters. Most importantly for the contest, “constrainedness” < 1 makes the problem unsolvable (i.e., 0.999 is very nearly solvable)

Input Domains
nomystery, tpp, rovers
Thanks Patricia Riddle and Mike Barley

Idea Reformulates the problem using a bagged representation

Input Domains transport, gripper, barman
• **document-transfer** (*Thanks to Jordan Douglas*): Need to deliver documents, but can also use them to fuel the travel.

• **diving** (*Thanks to Charles Gretton, Nathan Robinson, CM*): Need to photograph certain locations, but air tanks are a precious resource that aren’t always there.

• **diagnosis** (*Thanks to Patrik Haslum*): Encodings of diagnosis problems for control of power plans / autonomous helicopters.
Baffling Board Games

- **tetris** (*Thanks to Mauro Vallati*): Moving tetris pieces around until the board is cleared.

- **pegsol-row5** (*Thanks to Florian Pommerening and Malte Helmert*): Must get 5 rows up on a board, but the task is mathematically impossible.

- **chessboard-pebbling** (*Thanks to Florian Pommerening*): Must clear the bottom corner of an infinite chessboard.
Planners (1/3)

- **ReachLunch** (*Tomas Balyo, Martin Suda*)
 6min DFS phase, followed by Property Directed Reachability

- **iProverPlan** (*Konstantin Korovin, Martin Suda*)
 Theorem prover for a lifted (1st-order) SAT-as-planning encoding

- **SymPA** (*Alvaro Torralba, Jörg Hoffmann*)
 Symbolic search using PDBs and perimeters
 - **irr** variant removes irrelevant operators found with M&S

- **M+S** (*Alvaro Torralba, Jörg Hoffmann*)
 M&S with linear merges and perfect shrinking (optionally **irr**)
• **SimDominance** *(Alvaro Torralba, Jörg Hoffmann)*
 M&S with multiple merge strategies. A* with h^1 / dominance pruning

• **DECS** *(Daniel Gnad, Alvaro Torralba, Jörg Hoffmann, Martin Wehrle)*
 Decoupled search with an X-shape topology using A* and h^{max}

• **Django** *(Daniel Gnad, Marcel Steinmetz, Jörg Hoffmann)*
 Performs incremental red-black search using A* and h^{max}.

• **CLone** *(Marcel Steinmetz, Jörg Hoffmann)*
 DFS using Critical-Path Driven Clause Learning
Aidos *(Jendrik Seipp, Florian Pommerening, Silvan Sievers, Martin Wehrle, Chris Fawcett, Yusra Alkhazraji)*

Portfolio using stubborn sets and combination of (1) DE PDBs (2) LP with potentials (3) projected “depletable resources”

- **v1** distributes time according to experiments; **v2** distributes uniformly; and **v3** distributes to maximize coverage / time

h++ *(Patrik Haslum)*

Incrementally improves lower bounds until h+ is unsolvable

DE-PDB *(Florian Pommerening, Jendrik Seipp)*

$\frac{1}{2}$ time spent on building DE PDB and $\frac{1}{2}$ spent on DFS with pruning

blind

Eager blind search using the latest FD
Results (out of 340 problems)

<table>
<thead>
<tr>
<th>Runner Up</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SymPA</td>
<td>239</td>
</tr>
<tr>
<td>Alvaro Torralba</td>
<td></td>
</tr>
<tr>
<td>base</td>
<td>227</td>
</tr>
<tr>
<td>Jörg Hoffmann</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Winner</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aidos</td>
<td>262</td>
</tr>
<tr>
<td>Jendrik Seipp</td>
<td></td>
</tr>
<tr>
<td>v1</td>
<td>259</td>
</tr>
<tr>
<td>Florian Pommerening</td>
<td></td>
</tr>
<tr>
<td>v2</td>
<td>250</td>
</tr>
<tr>
<td>Silvan Sievers</td>
<td></td>
</tr>
<tr>
<td>v3</td>
<td></td>
</tr>
<tr>
<td>Martin Wehrle</td>
<td></td>
</tr>
<tr>
<td>Chris Fawcett</td>
<td></td>
</tr>
<tr>
<td>Yusra Alkhazraji</td>
<td></td>
</tr>
</tbody>
</table>

Muise and Lipovetzky: Unsolvability IPC Track
Results (out of 340 problems)

Runner Up – SymPA

<table>
<thead>
<tr>
<th></th>
<th>Score</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>irr</td>
<td>239</td>
<td>Alvaro Torralba</td>
</tr>
<tr>
<td>base</td>
<td>227</td>
<td>Jörg Hoffmann</td>
</tr>
</tbody>
</table>

Winner

- Aidos
- Jendrik Seipp
- v1 262
- v2 259
- v3 250
- Chris Fawcett
- Yusra Alkhazraji

Muise and Lipovetzky: Unsolvability IPC Track
Results (out of 340 problems)

Runner Up – SymPA

<table>
<thead>
<tr>
<th>irr</th>
<th>239</th>
<th>Alvaro Torralba</th>
</tr>
</thead>
<tbody>
<tr>
<td>base</td>
<td>227</td>
<td>Jörg Hoffmann</td>
</tr>
</tbody>
</table>

Winner – Aidos

<table>
<thead>
<tr>
<th>v1</th>
<th>262</th>
<th>Jendrik Seipp</th>
</tr>
</thead>
<tbody>
<tr>
<td>v2</td>
<td>259</td>
<td>Florian Pommerening</td>
</tr>
<tr>
<td>v3</td>
<td>250</td>
<td>Silvan Sievers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Martin Wehrle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chris Fawcett</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yusra Alkhazraji</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>bottleneck</th>
<th>pegsol</th>
<th>over-tpp</th>
<th>over-nomystery</th>
<th>over-rovers</th>
<th>sliding-tiles</th>
<th>doc-transfer</th>
<th>tetris</th>
<th>diagnosis</th>
<th>bag-transport</th>
<th>chess-pebbling</th>
<th>bag-grripper</th>
<th>bag-barman</th>
<th>pegsol-row5</th>
<th>cave-diving</th>
</tr>
</thead>
</table>

Aidos1
Aidos2
Aidos3
SymPA (irr)
SymPA
SimDominance
M+S (irr)
DECS
M+S
DE-PDB
CLone
Django
blind
ReachLunch
h++
iProverPlan
Results

<table>
<thead>
<tr>
<th>bottleneck</th>
<th>pegsol</th>
<th>over-tpp</th>
<th>over-nomystery</th>
<th>over-rovers</th>
<th>sliding-tiles</th>
<th>doc-transfer</th>
<th>tetris</th>
<th>diagnosis</th>
<th>bag-transport</th>
<th>chess-pebbling</th>
<th>bag-grripper</th>
<th>bag-barman</th>
<th>pegsol-row5</th>
<th>cave-diving</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Aidos1														
Aidos2														
Aidos3														
SymPA (irr)														
SymPA														
SimDominance														
M+S (irr)														
DECS														
M+S														
DE-PDB														
CLone														
Django														
blind														
ReachLunch														
h++														
iProverPlan														
Results

<table>
<thead>
<tr>
<th>bottleneck</th>
<th>pegsol</th>
<th>over-tpp</th>
<th>over-nomystery</th>
<th>over-rovers</th>
<th>sliding-tiles</th>
<th>doc-transfer</th>
<th>tetris</th>
<th>diagnosis</th>
<th>bag-transport</th>
<th>chess-pebbling</th>
<th>bag-gripper</th>
<th>bag-barman</th>
<th>pegsol-row5</th>
<th>cave-diving</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Aidos1
Aidos2
Aidos3
SymPA (irr)
SymPA
SimDominance
M+S (irr)
DECS
M+S
DE-PDB
CLone
Django
blind
ReachLunch
h++
iProverPlan
Unknown Known Results

Table: Unknowns solved (Part 1)

<table>
<thead>
<tr>
<th>Domain Team</th>
<th>SymPA (irr)</th>
<th>SimDominance</th>
<th>SymPA</th>
<th>CLone</th>
<th>DECS</th>
</tr>
</thead>
<tbody>
<tr>
<td>document-transfer</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>diagnosis</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL:</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Table: Unknowns solved (Part 2)

<table>
<thead>
<tr>
<th>Domain Team</th>
<th>Aidos3</th>
<th>Aidos2</th>
<th>Aidos1</th>
<th>Django</th>
<th>M+S (irr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>document-transfer</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>diagnosis</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL:</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Next Steps

To be released on unsolve-ipc.eng.unimelb.edu.au

- Git repo of solvers / domains / eval setup / etc
- DataJoy project of all the statistics / analysis
- Planner descriptions (extended abstracts)
Next Steps

To be released on unsolve-ipc.eng.unimelb.edu.au

- Git repo of solvers / domains / eval setup / etc
- DataJoy project of all the statistics / analysis
- Planner descriptions (extended abstracts)

Unsolve-IPC-2018

Any takers?
Thanks again to all who participated, submitted domains, provided server support, played devil’s advocate\(^1\), encouraged the endeavour, etc.

\(^1\)if LAMA doesn’t solve in 30min; return "unsolvable"